Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\Leftrightarrow x-10\left(\dfrac{2}{11\cdot13}+\dfrac{2}{13\cdot15}+...+\dfrac{2}{53\cdot55}\right)=\dfrac{3}{11}\)
\(\Leftrightarrow x-10\left(\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{53}-\dfrac{1}{55}\right)=\dfrac{3}{11}\)
\(\Leftrightarrow x-10\cdot\dfrac{4}{55}=\dfrac{3}{11}\)
=>x=3/11+20/55=3/11+4/11=7/11
c: \(\Leftrightarrow\left(\dfrac{x-1}{99}-1\right)+\left(\dfrac{x-2}{98}-1\right)+\left(\dfrac{x-5}{95}-1\right)=\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{95}\)
\(\Leftrightarrow x-100=1\)
hay x=101
a) ta có công thức \(\frac{a}{n.\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)
ta có \(N=\frac{5^2}{5.10}+\frac{5^2}{10.15}+...+\frac{5^2}{2005.2010}\)
\(N=5\left(\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{2005.2010}\right)\)
\(N=5\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{2005}-\frac{1}{2010}\right)\)(sử dụng quy tắc dấu ngoặc)
\(N=5\left[\frac{1}{5}-\left(\frac{1}{10}-\frac{1}{10}\right)-\left(\frac{1}{15}-\frac{1}{15}\right)-...-\left(\frac{1}{2005}-\frac{1}{2005}\right)-\frac{1}{2010}\right]\)
\(N=5\left[\frac{1}{5}-0-0-...-0-\frac{1}{2010}\right]\)
\(N=5\left[\frac{1}{5}-\frac{1}{2010}\right]\)
\(N=5.\frac{401}{2010}\)
\(N=\frac{401}{402}\)
b) \(M=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\)
ta thấy \(\frac{1}{11}=\frac{1}{11}\)
\(\frac{1}{12}
Số học sinh trung bình của trường đó là:
1200.\(\dfrac{5}{8}\)=750( học sinh)
Số học sinh khá của trường đó là:
1200.\(\dfrac{1}{3}\)=400( học sinh)
Số học sinh giỏi của trường đó là:
1200 - 750 - 400 = 50( học sinh)
a: \(=\dfrac{37}{4}+\dfrac{117}{16}+\dfrac{1}{4}=\dfrac{19}{2}+\dfrac{117}{16}=\dfrac{269}{16}\)
b: \(=1+\left(\dfrac{9}{10}+\dfrac{8}{10}\right):\dfrac{19}{6}=1+\dfrac{17}{10}\cdot\dfrac{6}{19}=\dfrac{146}{95}\)
c: \(=\dfrac{1}{4}-\dfrac{6}{4}+\dfrac{6}{5}=\dfrac{-5}{4}+\dfrac{6}{5}=\dfrac{-1}{20}\)
\(\dfrac{1}{38}>\dfrac{1}{40}>\dfrac{1}{42}>...>\dfrac{1}{50}\)
=>\(\dfrac{1}{38}+\dfrac{1}{40}+\dfrac{1}{42}+\dfrac{1}{44}+\dfrac{1}{46}+\dfrac{1}{48}+\dfrac{1}{50}< 7\cdot\dfrac{1}{38}=\dfrac{7}{38}< 1\)
Vậy tổng trên bé hơn 1
A=-1-3-5-...-2017
=-(1+3+5+...+2017)
Xét tổng B=1+3+5+...+2017
Tổng B có:(2017-1):2+1=1009(số hạng)
Tổng B=\(\dfrac{\left(2017+1\right)\cdot1009}{2}=1009\cdot1009=1018081\)
=>A=-B=-1018081
\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{20}-\dfrac{1}{20}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{20}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{10}\right)\)
\(=\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{20}\) (đpcm)