K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 3 2022

\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{20}-\dfrac{1}{20}\right)\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{20}\right)\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{10}\right)\)

\(=\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{20}\) (đpcm)

12 tháng 4 2017

Ta có: \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{19}+\dfrac{1}{20}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{20}\right)\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{19}+\dfrac{1}{20}-\left(1+\dfrac{1}{2}+...+\dfrac{1}{10}\right)\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{19}+\dfrac{1}{20}-1-\dfrac{1}{2}-...-\dfrac{1}{10}\)

\(=\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{20}\)

Vậy \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}=\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{20}\)

Giải

Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)

\(\Rightarrow\)D < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{19.20}\)

Nhận xét: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{19.20}=\dfrac{1}{19}-\dfrac{1}{20}\)

\(\Rightarrow\) D< 1- \(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

D< 1 - \(\dfrac{1}{20}\)

D< \(\dfrac{19}{20}\)<1

\(\Rightarrow\)D< 1

Vậy D=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{5^2}\)<1

30 tháng 4 2017

A=\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

A=\(\dfrac{1}{2^2.1}+\dfrac{1}{2^2.2^2}+\dfrac{1}{3^2.2^2}+...+\dfrac{1}{50^2.2^2}\)

A=\(\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)

\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{50.50}\right)\)

Ta có :

\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\dfrac{1}{50.50}< \dfrac{1}{49.50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)\)Nhận xét :

\(\dfrac{1}{1.2}< 1-\dfrac{1}{2};\dfrac{1}{2.3}< \dfrac{1}{2}-\dfrac{1}{3};...;\dfrac{1}{49.50}< \dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{2^2}\left(1-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{4}.\dfrac{49}{50}\)<1

A<\(\dfrac{49}{200}< \dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{1}{2}\)

15 tháng 6 2018

a, \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\)

\(\Rightarrow\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(\Rightarrow\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}\)

\(\Rightarrow\dfrac{1}{1}-\dfrac{1}{100}\)

\(\Rightarrow\dfrac{99}{100}\)

15 tháng 6 2018

thế phần b ko làm à ???

là quên hay ko biết làm

23 tháng 4 2023

cíu tui trời ơi

 

7 tháng 4 2017

bài 2

a;đặt biểu thức là S
S < 1/1.2 + 1/2.3 + .......1/(n-1)n
= 1- 1/2 +1 /2 -1/3+........ + 1/n-1 - 1/n

= 1 -1/n <1

vậy S < 1

10 tháng 8 2017

giúp mk với

mai mk đi học rùioho

10 tháng 8 2017

Bài này có cần phải tính nhanh ko vậy bn?
Nếu ko thì lấy máy tính mà tính cũng đc mà

23 tháng 4 2023

1) \(\dfrac{1}{2}+\dfrac{13}{19}-\dfrac{4}{9}+\dfrac{6}{19}+\dfrac{5}{18}\)

\(=\dfrac{1}{2}+\left(\dfrac{13}{19}+\dfrac{6}{19}\right)-\dfrac{4}{9}+\dfrac{5}{18}\)

\(=\dfrac{3}{2}-\dfrac{4}{9}+\dfrac{5}{18}\)

\(=\dfrac{19}{18}+\dfrac{5}{18}\)

\(=\dfrac{24}{18}\)

\(=\dfrac{4}{3}\)

2) \(\dfrac{-20}{23}+\dfrac{2}{3}-\dfrac{3}{23}+\dfrac{2}{5}+\dfrac{7}{15}\)

\(=\left(-\dfrac{20}{23}-\dfrac{3}{23}\right)+\dfrac{2}{3}+\dfrac{2}{5}+\dfrac{7}{15}\)

\(=-1+\dfrac{2}{3}+\dfrac{2}{5}+\dfrac{7}{15}\)

\(=-\dfrac{1}{3}+\dfrac{2}{5}+\dfrac{7}{15}\)

\(=\dfrac{1}{15}+\dfrac{7}{15}\)

\(=\dfrac{8}{15}\)

3) \(\dfrac{4}{3}+\dfrac{-11}{31}+\dfrac{3}{10}-\dfrac{20}{31}-\dfrac{2}{5}\)

\(=\left(\dfrac{-11}{31}-\dfrac{20}{31}\right)+\dfrac{4}{3}+\dfrac{3}{10}-\dfrac{2}{5}\)

\(=-1+\dfrac{4}{3}+\dfrac{3}{10}-\dfrac{2}{5}\)

\(=\dfrac{1}{3}+\dfrac{3}{10}-\dfrac{2}{5}\)

\(=\dfrac{1}{3}-\dfrac{1}{10}\)

\(=\dfrac{7}{30}\)

4) \(\dfrac{5}{7}.\dfrac{5}{11}+\dfrac{5}{7}.\dfrac{2}{11}-\dfrac{5}{7}.\dfrac{14}{11}\)

\(=\dfrac{5}{7}.\left(\dfrac{5}{11}+\dfrac{2}{11}-\dfrac{14}{11}\right)\)

\(=\dfrac{5}{7}.-\dfrac{7}{11}\)

\(=-\dfrac{35}{77}\)

\(=-\dfrac{5}{11}\)