Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\frac{m-3}{m+2}=\frac{m+2-5}{m+2}=1-\frac{5}{m+2}\)
\(\text{Để y là số âm }\)
\(\Rightarrow\frac{5}{m+2}\text{ là số dương}\)
\(\Rightarrow m+2\text{ là số dương}\)
\(\Rightarrow m+2>0\text{ }\)
\(\Rightarrow m>-2\)
a, \(A=\frac{3\left(x-1\right)^2+12}{\left(x-1\right)^2+2}=\frac{3\left[\left(x-1\right)^2+2\right]+6}{\left(x-1\right)^2+2}=3+\frac{6}{\left(x-1\right)^2+2}\)
Để \(A\in Z\Leftrightarrow\left(x-1\right)^2+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Mà \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+2\ge2\)
\(\Rightarrow\left(x-1\right)^2+2\in\left\{2;3;6\right\}\)
Ta có bảng:
(x - 1)2 + 2 | 2 | 3 | 6 |
x | 1 | 2 | 3 |
Vậy...
b, Theo câu a ta có: \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{1}{\left(x-1\right)^2+2}\le\frac{1}{2}\Rightarrow\frac{6}{\left(x-1\right)^2+2}\le\frac{6}{2}=3\)
Dấu "=" xảy ra khi x - 1 = 0 <=> x = 1
Vậy GTLN của A = 3 khi x = 1
a) Ta có :
\(A=\frac{3.\left(x-1\right)^2+12}{\left(x-1\right)^2+2}=\frac{3.\left(x-1\right)^2+3.2+6}{\left(x-1\right)^2+2}=\frac{3.\left[\left(x-1\right)^2+2\right]+6}{\left(x-1\right)^2+2}=3+\frac{6}{\left(x-1\right)^2+2}\)
Để A có giá trị nguyên \(\Leftrightarrow\)\(3+\frac{6}{\left(x-1\right)^2+2}\)\(\in\)Z \(\Leftrightarrow\)\(\frac{6}{\left(x-1\right)^2+2}\)\(\in\)Z \(\Leftrightarrow\)( x - 1 )2 + 2 \(\in\)Ư ( 6 )
\(\Rightarrow\)( x - 1 )2 + 2 \(\in\){ 1 ; -1 ; 2 ; -2 ; 3 ; -3 ; 6 ; -6 }
Lập bảng ta có :
(x-1)2+2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | loại | loại | 0 | loại | \(\orbr{\begin{cases}2\\0\end{cases}}\) | loại | \(\orbr{\begin{cases}3\\-1\end{cases}}\) | loại |
Vậy x = { 0 ; 2 ; 3 ; -1 }
b) để A có giá trị lớn nhất \(\Leftrightarrow\)\(3+\frac{6}{\left(x-1\right)^2+2}\)có GTLN \(\Leftrightarrow\)\(\frac{6}{\left(x-1\right)^2+2}\)có GTLN \(\Leftrightarrow\)( x - 1 )2 +2 có GTNN
Mà ( x - 1 )2 \(\ge\)0 \(\Rightarrow\)( x - 1 )2 + 2 \(\ge\)2 \(\Rightarrow\)GTNN của ( x - 1 )2 + 2 là 2 \(\Leftrightarrow\)x = 1
Vậy A có GTLN là : \(\frac{3.\left(1-1\right)^2+12}{\left(1-1\right)^2+2}=\frac{12}{2}=6\)\(\Leftrightarrow\)x = 1
\(A = {6n-1\over 3n+2} \),A là số nguyên nên 6n-1 phải chia hết cho 3n+2. Suy ra 3n+2 là ước của 6n-1 = \({\pm 1 , \pm (6n-1)}\)
.với 3n+2 =1 => n=\(x = {-1\ \ \over 3}\) (loại)
.Với 3n+2= -1=> n= -1 => A= 7 ( thỏa mãn )
.với 3n +2 =6n-1 => n = 1 => A = 1 (Thỏa mãn )
.với 3n+2 =1-6n => n=\(x = {-1 \ \over 9}\) (loại )
Kết luận vậy n = { -1,1 }
\(A=\dfrac{3}{\sqrt{x+1}}\) (đk: x>-1)
Để A nguyên \(\Rightarrow\sqrt{x+1}\) phải là ước của 3
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)
M = 5x^2y^2+(-1/2ax^2y^2)+7ax^2+(-x^2y^2)
M=(5a+(-1/2a)+7a+(-1)) . x^2y^2
M= (23/2a - 1) x^2y^2
a)voi gia tri nao cua a thi M ko am
⇒M ≥ 0 ⇒(23/2a - 1).x^2y^2 ≥0
⇒23/2a - 1 ≥ 0 vi x^2y^2 ⇒0 ∀ x;y
⇒23/2a ≥ 0
⇒a ≥ . 2/23
⇒a ≥ 2/23
Vay a ≥ 2/23 thi M ko am voi moi x;y
b)Voi gia tri nao cua a thi M ko dg
⇒M ≤ 0 ⇒ (23/2a - 1).x^2y^2 ≤ 0 ∀ x.y
⇒23/2a ≤ 1
⇒ a ≤ 2/23
Voi moi a ≤2/23 thi M ko duong voi moi x;y
c) Thay a=2 vao M ta dc:
M= (23.2:2 -1).x^2y^2
M=22x^2y^2
De M=88 ⇒22x^2y^2 =88 ⇒x^2y^2=4
⇒(xy^2)= 2^2 ⇒ xy=2
⇒x= 2⇒y=1 ; x=1⇒y=2 ; x=-2 ⇒y=-1 ; x=-1y⇒-2
Vay(x;y)= ( (2;1); (1;2); (-2;-1); (-1;-2) thi M = 88
(ko danh dc dau cua chu ban thong cam cho mik)
a: M=x^2y^2(5a-1/2a+7a-1)
=(23/2a-1)*x^2y^2
M>=0
=>23/2a-1>=0
=>23/2a>=1
=>a>=2/23
b: M<=0
=>23/2a-1<=0
=>a<=2/23
c: a=2 thì M=22x^2y^2
M=84
=>x^2y^2=84/22=42/11
mà x,y nguyên
nên \(\left(x,y\right)\in\varnothing\)
\(M=\dfrac{4a-3}{a+2}\left(a\in Z,a\ne-2\right)\)
`M` có gt âm hay `M<0`
TH1 : \(a>-2=>a+2>0\)
\(M=\dfrac{4a-3}{a+2}< 0\\ =>4a-3< 0\) ( Nhân 2 vế BPT cho `a+2>0` )
\(=>a< \dfrac{3}{4}\)
Kết hợp ĐK \(=>-2< a< \dfrac{3}{4}\)
TH2 : \(a< -2=>a+2< 0\)
\(M=\dfrac{4a-3}{a+2}< 0\\ =>4a-3>0\) ( Nhân 2 vế cho `a+2<0` )
\(=>a>\dfrac{3}{4}\) (KTMDK)
Vậy : \(-2< a< \dfrac{3}{4}\) . Mà a là số nguyên nên \(a\in\left\{-1;0\right\}\)
Vì M phải có giá trị âm thì \(M< 0\)
\(M=\dfrac{4a-3}{a+2}\left(a\in Z,a\ne2\right)\)
\(\Rightarrow\dfrac{4a-3}{a+2}< 0\)
\(\Rightarrow4a-3< 0\)
\(\Rightarrow4a< 3\)
\(\Rightarrow a< \dfrac{3}{4}\)
vậy \(a< \dfrac{3}{4}\)