K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2014

        M=75.(42013+42012+…..+43+42+1)+25

=75.42013+75.42012+……+75.43+75.42+75.1+25

=75.42013+75.42012+……+75.43+75.42+75+25

=75.42013+75.42012+……+75.43+75.42+100

=3.(25.4).42012+3.(25.4).42011+…..+3.(25.4).42+3.(25.4).4+100

=3.100.42012+3.100.42011+…..+3.100.42+3.100.4+100

=100.(3.42012+3.42011+…..+3.42+3.4+1)

Vì 100 chia het 100 nen 100.(3.42012+3.42011+…..+3.42+3.4+1) chia het 100

Vậy M chia het 100

28 tháng 4 2022

\(M=75.4\left(4^{2020}+4^{2019}+...+4+1\right)+75+25=\)

\(=300.\left(4^{2020}+4^{2019}+...+4+1\right)+100=\)

\(=100\left[3.\left(4^{2020}+4^{2019}+...+4+1\right)+1\right]⋮100\)

 

19 tháng 12 2022

Ta có M ⋮ 25 vì 75 ⋮ 25

Lại có M = 75 ( 42021 + 42020 + ... + 42 + 4 + 1 )

= 75 . 4 ( 22020 + 22019 + ... + 4 + 1 + 0,25 ) ⋮ 4 vì 4 ⋮ 4

Mà ( 25; 4 ) = 1 ⇒ M ⋮ 100

Vậy M ⋮ 100

16 tháng 2 2018

Hình như trong ngoặc là \(4^{2013}+...+4+1\), nếu đề đúng thì pần tính sau cưa trừ 4 đi là được, kết quả vẫn đúng

Đặt \(4^{2013}+...+4+1=A\)

\(4A=4^{2014}+...+4^2+4\)

\(4A-A=3A=4^{2014}-1\)

\(\Rightarrow A=\frac{4^{2014}-1}{3}\)

\(\Rightarrow75A+25=25.4^{2014}⋮100\)

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Lời giải:

Xét $A=4^{2021}+4^{2020}+...+4^2+4+1$

$4A=4^{2022}+4^{2021}+...+4^3+4^2+4$
$\Rightarrow 4A-A=4^{2022}-1$

$\Rightarrow 3A=4^{2022}-1$

$\Rightarrow M=75A+25=25(4^{2022}-1)+25=25.4^{2022}=100.4^{2021}\vdots 100$

Ta có đpcm.

18 tháng 9 2021

đặt S=1+4+42+......+41999S=1+4+42+......+41999

⇒4S=4+42+43+....+42000⇒4S=4+42+43+....+42000

⇒4S−S=(4+42+43+....+42000)−(1+4+42+.....+41999)⇒4S−S=(4+42+43+....+42000)−(1+4+42+.....+41999)

⇒3S=42000−1⇒S=42000−13⇒3S=42000−1⇒S=42000−13

Khi đó A=75.S=75.42000−13=75.(42000−1)3=753.(42000−1)=25.(42000−1)=25.42000−25A=75.S=75.42000−13=75.(42000−1)3=753.(42000−1)=25.(42000−1)=25.42000−25

Ta có: 42000-1=(44)500-1=(...6)-1=....5

=>25.42000-25=25.(....5)-25=(...5)-25=....0 chia hết cho 100

Vậy ta có điều phải chứng minh

18 tháng 9 2021

Trong các phép chia sau, phép chia nào là phép chia hết, phép chia nào là phép chia có dư?

Viết kết quả phép chia dạng a = b.q+ r, với 0≤≤ r < b.

a) 144: 3;          b) 144: 13;        c) 144: 30.

Phương pháp: Viết kết quả phép chia dạng a = b.q+ r, với 0≤≤ r < b.

Nếu r = 0 thì phép chia hết, nếu 0<  r < b thì phép chia có dư

Lời giải chi tiết

144 = 3.48 + 0

=> Phép chia hết

b) 144 = 13.11 + 1

=> Phép chia có dư

c) 144 = 30.4 + 24

=> Phép chia có dư

8 tháng 11 2023

a) Đặt A = \(6^5.5-3^5\)

\(=\left(2.3\right)^5.5-3^5\)

\(=2^5.3^5.5-3^5\)

\(=3^5.\left(2^5.5-1\right)\)

\(=3^5.\left(32.5-1\right)\)

\(=3^5.159\)

\(=3^5.3.53⋮53\)

Vậy \(A⋮53\)

b) Đặt \(B=2+2^2+2^3+...+2^{120}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\)

\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{119}.\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{119}.3\)

\(=3.\left(2+2^3+...+2^{59}\right)⋮3\)

Vậy \(B⋮3\)

\(B=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)

\(=2.\left(1+2+2^2\right)+3^4.\left(1+2+2^2\right)+...+2^{118}.\left(1+2+2^2\right)\)

\(=2.7+2^4.7+...+2^{118}.7\)

\(=7.\left(2+2^4+...+2^{118}\right)⋮7\)

Vậy \(B⋮7\)

\(B=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)

\(+...+\left(2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)

\(=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)

\(+2^{116}.\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+2^6.31+...+2^{116}.31\)

\(=31.\left(2+2^6+...+2^{116}\right)⋮31\)

Vậy \(B⋮31\)

\(B=\left(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8\right)+\left(2^9+2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}+2^{16}\right)\)

\(+...+\left(2^{113}+2^{114}+2^{115}+2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)

\(=2.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)+2^9.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)

\(+...+2^{113}.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)

\(=2.255+2^9.255+...+2^{113}.255\)

\(=255.\left(2+2^9+...+2^{113}\right)\)

\(=17.15.\left(2+2^9+...+2^{113}\right)⋮17\)

Vậy \(B⋮17\)

8 tháng 11 2023

c) Đặt C = \(3^{4n+1}+2^{4n+1}\)

Ta có:

\(3^{4n+1}=\left(3^4\right)^n.3\)

\(2^{4n}=\left(2^4\right)^n.2\)

\(3^4\equiv1\left(mod10\right)\)

\(\Rightarrow\left(3^4\right)^n\equiv1^n\left(mod10\right)\equiv1\left(mod10\right)\)

\(\Rightarrow3^{4n+1}\equiv\left(3^4\right)^n.3\left(mod10\right)\equiv1.3\left(mod10\right)\equiv3\left(mod10\right)\)

\(\Rightarrow\) Chữ số tận cùng của \(3^{4n+1}\) là \(3\)

\(2^4\equiv6\left(mod10\right)\)

\(\Rightarrow\left(2^4\right)^n\equiv6^n\left(mod10\right)\equiv6\left(mod10\right)\)

\(\Rightarrow2^{4n+1}\equiv\left(2^4\right)^n.2\left(mod10\right)\equiv6.2\left(mod10\right)\equiv2\left(mod10\right)\)

\(\Rightarrow\) Chữ số tận cùng của \(2^{4n+1}\) là \(2\)

\(\Rightarrow\) Chữ số tận cùng của C là 5

\(\Rightarrow C⋮5\)