K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2016

Cho \(\log_ab=3;\log_ac=-2\)

1. Với \(x=a^3b^2\sqrt{c}\Rightarrow\log_ax=\log_a\left(a^3b^2\sqrt{c}\right)=\log_aa^3+\log_ab^2+\log_ac^{\frac{1}{2}}\)

             \(=3+2.3+\frac{1}{2}\left(-2\right)=8\)

2. Với \(x=\frac{a^4\sqrt[3]{b}}{c^3}\) \(\Rightarrow\log_a\frac{a^4\sqrt[3]{b}}{c^2}=\log_aa^4+\log_ab^{\frac{1}{3}}+\log_ac^3\)

                                              \(=4+\frac{1}{3}\log_ab+3\log_ac=4+\frac{1}{3}.3+3\left(-2\right)=-1\)

3. Với \(x=\log_a\frac{a^2\sqrt[3]{b}c}{\sqrt[3]{a\sqrt{c}}b^3}\Rightarrow\log_a\frac{a^2b^{\frac{1}{3}}c}{a^{\frac{1}{3}}b^3c^{\frac{1}{6}}}=\log_a\frac{a^{\frac{5}{3}}c^{\frac{5}{6}}}{b^{\frac{8}{3}}}=\log_aa^{\frac{5}{3}}-\log_ab^{\frac{8}{3}}+\log_ac^{\frac{3}{2}}\)

                                                           \(=\frac{5}{3}-\frac{8}{3}\log_ab+\frac{5}{6}\log_ac=\frac{5}{3}-\frac{8}{3}3+\frac{5}{6}\left(-2\right)=-8\)

                      

    

NV
10 tháng 11 2018

1.\(\dfrac{log_ac}{log_{ab}c}=log_ac.log_c\left(ab\right)=log_ac.\left(log_ca+log_cb\right)=log_ac.log_ca+log_ac.log_cb=\dfrac{log_ac}{log_ac}+\dfrac{log_cb}{log_ca}=1+log_ab\)

2. \(log_{ax}bx=\dfrac{log_abx}{log_aax}=\dfrac{log_ab+log_ax}{log_aa+log_ax}=\dfrac{log_ab+log_ax}{1+log_ax}\)

3. \(\dfrac{1}{log_ax}+\dfrac{1}{log_{a^2}x}+...+\dfrac{1}{log_{a^n}x}=log_xa+log_xa^2+...+log_xa^n\)

\(=log_xa+2log_xa+...+n.log_xa=log_xa+2log_xa+...+n.log_xa\)

\(=log_xa.\left(1+2+...+n\right)=\dfrac{n\left(n+1\right)}{2}log_xa=\dfrac{n\left(n+1\right)}{2.log_ax}\)

NV
5 tháng 1

\(P=log_{\dfrac{\sqrt{a}}{b}}a+log_{\dfrac{\sqrt{a}}{b}}\sqrt[3]{b}=log_{\dfrac{\sqrt{a}}{b}}a+\dfrac{1}{3}log_{\dfrac{\sqrt{a}}{b}}b\)

\(=\dfrac{1}{log_a\dfrac{\sqrt{a}}{b}}+\dfrac{1}{3.log_b\dfrac{\sqrt{a}}{b}}=\dfrac{1}{log_a\sqrt{a}-log_ab}+\dfrac{1}{3\left(log_b\sqrt{a}-log_bb\right)}\)

\(=\dfrac{1}{\dfrac{1}{2}-2}+\dfrac{1}{3\left(\dfrac{1}{4}-1\right)}=-\dfrac{10}{9}\)

các bạn giải giúp mình mấy câu bất đẳng thức này với 1) tìm GTLN a) y=(6x+3)(5-2x) \(\dfrac{-1}{2}\le x\le\dfrac{5}{2}\) b)y=\(\dfrac{x}{x^2+2}\) x>0 2)cho 3 số thực a,b,c thỏa mãn \(a\ge9,b\ge4,c\ge1\). CM :\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\le\dfrac{11abc}{12}\) 3)cho x,y>0 thỏa mãn x+y=2 . CM a)xy(x2+y2)\(\le2\) b)x3y3(x3+y3)\(\le2\) 4) x,y là các số thực thỏa mãn \(0\le x\le3,0\le y\le4\) tìm GTLN A= (3-x)(4-y)(2x+3y) 5) biết x,y,z,u\(\ge0\)và...
Đọc tiếp

các bạn giải giúp mình mấy câu bất đẳng thức này với

1) tìm GTLN

a) y=(6x+3)(5-2x) \(\dfrac{-1}{2}\le x\le\dfrac{5}{2}\)

b)y=\(\dfrac{x}{x^2+2}\) x>0

2)cho 3 số thực a,b,c thỏa mãn \(a\ge9,b\ge4,c\ge1\). CM :\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\le\dfrac{11abc}{12}\)

3)cho x,y>0 thỏa mãn x+y=2 . CM

a)xy(x2+y2)\(\le2\)

b)x3y3(x3+y3)\(\le2\)

4) x,y là các số thực thỏa mãn \(0\le x\le3,0\le y\le4\)

tìm GTLN A= (3-x)(4-y)(2x+3y)

5) biết x,y,z,u\(\ge0\)và 2x+xy+z+yzu=1

tìm GTLN của P=x2y2z2u

6)cho a,b,c>0 và a+b+c=3 .CMR:\(a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\le5\)

7) cho 3 số dương x,y,z có tổng bằng 1 .CMR : \(\sqrt{\dfrac{xy}{xy+z}}+\sqrt{\dfrac{yz}{yz+x}}+\sqrt{\dfrac{xz}{xz+y}}\le\dfrac{3}{2}\)

8)cho 3 số dương a,b,c có tổng bằng 3 .

tìm GTLN của S=\(\dfrac{bc}{\sqrt{3a+bc}}+\dfrac{ca}{\sqrt{3b+ca}}+\dfrac{ab}{\sqrt{3c+ab}}\)

ko cần làm chi tiết lắm chỉ cần hướng dẫn là đc zùi

3
17 tháng 2 2019

\(8,\dfrac{bc}{\sqrt{3a+bc}}=\dfrac{bc}{\sqrt{\left(a+b+c\right)a+bc}}=\dfrac{bc}{\sqrt{a^2+ab+ac+bc}}\)

\(=\dfrac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{b}{a+b}+\dfrac{c}{a+c}}{2}\)

Tương tự cho các số còn lại rồi cộng vào sẽ được

\(S\le\dfrac{3}{2}\)

Dấu "=" khi a=b=c=1

Vậy

17 tháng 2 2019

\(7,\sqrt{\dfrac{xy}{xy+z}}=\sqrt{\dfrac{xy}{xy+z\left(x+y+z\right)}}=\sqrt{\dfrac{xy}{xy+xz+yz+z^2}}\)

\(=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{\dfrac{x}{x+z}+\dfrac{y}{y+z}}{2}\)

Cmtt rồi cộng vào ta đc đpcm

Dấu "=" khi x = y = z = 1/3

NV
5 tháng 1

\(log_{a^2}\left(\dfrac{a^3}{\sqrt[5]{b^3}}\right)=\dfrac{1}{2}log_a\left(\dfrac{a^3}{\sqrt[5]{b^3}}\right)=\dfrac{1}{2}\left[log_aa^3-log_a\sqrt[5]{b^3}\right]=\dfrac{1}{2}\left(3-\dfrac{3}{5}log_ab\right)\)

\(\Rightarrow\dfrac{1}{2}\left(3-\dfrac{3}{5}log_ab\right)=3\)

\(\Rightarrow log_ab=-5\)

25 tháng 5 2022
\(a,b,c>0\)

\(\dfrac{a}{\sqrt{a^2+15bc}}+\dfrac{b}{\sqrt{b^2+15ca}}+\dfrac{c}{\sqrt{c^2+15ab}}\ge\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{a^2}{a\sqrt{a^2+15bc}}+\dfrac{b^2}{b\sqrt{b^2+15ca}}+\dfrac{c^2}{c\sqrt{c^2+15ab}}\ge\dfrac{3}{4}\)

Áp dụng BĐT Caushy-Schwarz ta được:

\(\dfrac{a^2}{a\sqrt{a^2+15bc}}+\dfrac{b^2}{b\sqrt{b^2+15ca}}+\dfrac{c^2}{c\sqrt{c^2+15ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+15bc}+b\sqrt{b^2+15ca}+c\sqrt{c^2+15ab}}\)

Ta chứng minh rằng:

\(a\sqrt{a^2+15bc}+b\sqrt{b^2+15ca}+c\sqrt{c^2+15ab}\le\dfrac{4}{3}\left(a+b+c\right)^2\)

\(\Leftrightarrow\sqrt{a}\sqrt{a^3+15abc}+\sqrt{b}\sqrt{b^3+15abc}+\sqrt{c}\sqrt{c^3+15abc}\le\dfrac{4}{3}\left(a+b+c\right)^2\)

Áp dụng BĐT Bunhiacopxki ta được:

\(\sqrt{a}\sqrt{a^3+15abc}+\sqrt{b}\sqrt{b^3+15abc}+\sqrt{c}\sqrt{c^3+15abc}\le\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+45abc\right)}\)Ta tiếp tục chứng minh:

\(\dfrac{16}{9}\left(a+b+c\right)^3\ge a^3+b^3+c^3+45abc\)

\(\Leftrightarrow\dfrac{16}{9}\left(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\right)\ge a^3+b^3+c^3+45abc\)

Áp dụng BĐT AM-GM (Caushy) ta được:

\(\dfrac{16}{9}\left(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\right)\ge\dfrac{16}{9}\left(a^3+b^3+c^3+3.2\sqrt{ab}.2.\sqrt{bc}.2.\sqrt{ca}\right)=\dfrac{16}{9}.\left(a^3+b^3+c^3+24abc\right)\)

Ta chứng minh:

\(\dfrac{16}{9}\left(a^3+b^3+c^3+24abc\right)\ge a^3+b^3+c^3+45abc\)

\(\Leftrightarrow\dfrac{16}{9}a^3+\dfrac{16}{9}b^3+\dfrac{16}{9}c^3+\dfrac{16}{9}.24abc\ge a^3+b^3+c^3+45abc\)

\(\Leftrightarrow\dfrac{7}{9}\left(a^3+b^3+c^3\right)\ge\dfrac{7}{3}abc\) (*)

Áp dụng BĐT AM-GM (Caushy) ta được:

\(\dfrac{7}{9}\left(a^3+b^3+c^3\right)\ge\dfrac{7}{9}.3\sqrt[3]{a^3b^3c^3}=\dfrac{7}{3}abc\)

\(\Rightarrow\) (*) đúng.

Vậy BĐT đã được chứng minh. Dấu "=" xảy ra khi \(a=b=c>0\).