Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Kẻ đường sinh AA’, gọi D là điểm đối xứng A’ qua tâm O’.
Kẻ BH vuông góc với A ' D ⇒ B H ⊥ A O O ' A ' ⇒ V O O ' A B = 1 3 . B H . S Δ O O ' A
Mà S Δ O O ' A = 1 2 . O O ' . O A = 2 a 2 ⇒ V O O ' A B = 2 a 2 3 x B H
Để V O O ' A B lớn nhất ⇔ B H = B O ' H ≡ O ' ⇒ A ' B = 2 a 2
Tam giác AA’B vuông tại A’, có tan A B A ' ^ = A A ' A ' B = 2 a 2 a 2 = 1 2
Vậy A B ; O ' ^ = A B ; A ' B ^ = A B A ' ^ = α ⇒ tan α = 1 2
Lấy điểm A ' ∈ O ' ; B ' ∈ O sao cho A A ' ; B B ' song song với trục O O ' .
Khi đó ta có lăng trụ đứng O A B ' . O ' A ' B .
Ta có:
Chọn A.
Phương pháp:
+ Gọi C là hình chiếu của A lên mặt đáy chứa đường tròn O ' ; R và D là hình chiếu của B lên mặt đáy chứa đường tròn (O;R).
+) Tính thể tích lăng trụ đứng O A D . O ' C B , từ đó suy ra thể tích tứ diện OO'AB và đánh giá.
Cách giải:
Chọn: D
Đáp án D.
Phương pháp :
+) Xác định mặt phẳng (P) chứa AB và song song với OO’.
+) d(OO’;AB) = D(OO’;(P))
Cách giải :
Dựng AA’//OO’ ta có: (OO’;AB) = (AA’;AB) = A’AB = 300
Gọi M là trung điểm của A’B ta có:
=>d(OO’;AB) = d(OO’;(ABA’)) = d(O’;(ABA’)) = O’M
Xét tam giác vuông ABA’ có
Xét tam giác vuông O’MB có
Chọn đáp án D
Phương pháp
+) Dựng AA’//OO’, BB’//OO’ (A’ thuộc đường tròn (O’) và B’ thuộc đường tròn (O))
+) Xác định khoảng cách giữa OO’ và song song với OB, đưa về bài toán khoảng cách từ điểm đến mặt phẳng.
+) Xác định khoảng cách, áp dụng hệ thức lượng trong tam giác vuông tính khoảng cách.
Cách giải
Dựng AA’//OO’, BB’//OO’ (A’ thuộc đường tròn (O’) và B’ thuộc đường tròn (O))
Ta có: