Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2,\)
Kẻ BH vuông góc với CD tại H
Xét hai tam giác BDH và BCH:
+) BH là cạnh chung
+) Góc BHD = góc BHC = 90 độ
+) DH = CH
=> Tam giác BDH = tam giác HCH (c.g.c)
=> BD = BC
Khác: DC = BC
=> BC = CD = DB => Tam giác BCD đều => Góc C = 60 độ
Mà: AB // CD => Góc B + góc C = 180 độ => Góc B = góc ABC = 180 độ - 60 độ = 120 độ
Ta có: ΔABD vuông tại A
=> AB^2 + AD^2 = BD^2
=> BD = 13 (ĐL pitago)
=> BD = BC =>Δ BDC cân tại B.
Kẻ đường cao BI
=> BI cũng là trung tuyến tam giác BDC
=> ID = IC.
Xét ΔABD vuông tại A và ΔBID vuông tại I.
=> ΔABD = ΔBID (cạnh huyền- góc nhọn)
=> BI = AD (2 góc tương ứng)
Xét ΔBID vuông tại I có :
BD^2 = BI^2 + ID^2 (ĐL pitago)
=> ID = IC = 13^2 - 12^2 = √25 = 5.
=> ID + IC = DC = 5.2 = 10.
tia AB cắt DC tại E ta thấy
AC là phân giác của góc ^DAE (gt)
AC vuông DE (gt)
=> tgiác ADE cân (AC vừa đường cao, vừa là phân giác)
lại có góc D = 60o nên ADE là tgiác đều
=> C là trung điểm DE (AC đồng thời la trung tuyến)
mà BC // AD => BC là đường trung bình của tgiác ADE
Ta có:
AB = DC = AD/2 và BC = AD/2
gt: AB + BC + CD + AD = 20
=> AD/2 + AD/2 + AD/2 + AD = 20
=> (5/2)AD = 20
=> AD = 2.20 /5 = 8 cm
(Hình vẽ chưa được chuẩn lắm, bạn vẽ lại cho chuẩn nha)
Vẽ thêm \(BH\perp CD\left(H\in CD\right)\)
Ta có tứ giác ABHD có 3 góc vuông
=> Tứ giác ABHD là hình chữ nhật
=> AB = HD = 4 cm ; AD = BH = 6 cm
=> HC = CD - HD = 12 - 4 = 8 (cm)
Ta thấy: Tam giác BHC vuông tại H
Áp dụng định lý Pytago, ta có: \(BC=\sqrt{BH^2+CH^2}=\sqrt{6^2+8^2}=\sqrt{100}=10\) (Cm)
Vậy BC = 10 cm