K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2018

a) Do AB//CD nên áp dụng hệ quả định lý Ta let ta có:

\(\frac{AO}{OC}=\frac{OB}{OD}\) hay \(\frac{DO}{DB}=\frac{OC}{AC}\)

Xét tam giác ABD có OM//AB nên \(\frac{OM}{AB}=\frac{DO}{DB}\)

Tương tự \(\frac{ON}{AB}=\frac{CO}{CA}\)

Vậy nên \(\frac{OM}{AB}=\frac{ON}{AB}\Rightarrow OM=ON\)

b) Coi AB = 1, DC = k thì \(\frac{DO}{OB}=\frac{DC}{AB}=k\Rightarrow\frac{DO}{DB}=\frac{k}{k+1}\)

\(\Rightarrow OM=ON=\frac{k}{k+1}\Rightarrow MN=\frac{2k}{k+1}\)

Ta có \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{1}+\frac{1}{k}=\frac{k+1}{k}\)

\(\frac{2}{MN}=\frac{2}{\frac{2k}{k+1}}=\frac{k+1}{k}\)

Vậy nên \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\)

c) Ta thấy ngay \(\Delta COD\sim\Delta AOB\left(g-g\right)\) theo tỉ lệ k ở câu b.

Vậy thì \(\frac{S_{COD}}{S_{AOB}}=\frac{2009^2}{2008^2}=\left(\frac{2009}{2008}\right)^2=k^2\Rightarrow k=\frac{2009}{2008}\)

Từ đó ta có \(\frac{OC}{OA}=\frac{DO}{OB}=\frac{2009}{2008}\)

Vậy thì \(\frac{S_{ADO}}{S_{AOB}}=\frac{2009}{2008}\Rightarrow S_{ADO}=\frac{2009}{2008}.2008^2=2009.2008\)

\(\frac{S_{BOC}}{S_{AOB}}=\frac{2009}{2008}\Rightarrow S_{BOC}=\frac{2009}{2008}.2008^2=2009.2008\)

Suy ra \(S_{ABCD}=S_{AOB}+S_{DOC}+S_{AOD}+S_{BOC}=2008^2+2009^2+2.2008.2009\)

\(=\left(2008+2009\right)^2=4017^2\left(cm^2\right)\)

27 tháng 3 2018

đúng rồi đó chị ơi

11 tháng 1 2016

SAi đề r bạn ơi cạnh bên AD chứ

11 tháng 1 2016

Vì OE // DC ==> OA/AC = OE/DC (định lý Ta-let) (1) 
Vì OF // DC ==> OB/BD = OF/DC (định lý Ta-let) (2) 
Vì AB // CD ==> OA/OC = OB/OD (định lý ta-let) 
Theo tính chất dãy tỉ số bằng nhau ta có: 
OA/OC = OB/OD <=> OA / (OA + OC) = OB / (OB + OD) 
<=> OA / AC = OB / BD (3) 
Từ (1), (2) và (3) suy ra ta có: 
OE / DC = OF / DC <=> OE = OF (đpcm)

22 tháng 11 2017

A B D C M N H O I E F G K J

a) Xét tam giác ADC có MH//AC nên \(\frac{AM}{MD}=\frac{CH}{HD}\) (Định lý Ta-let)

Lại có theo giả thiết \(\frac{AM}{MD}=\frac{CN}{BN}\)

Suy ra \(\frac{CN}{BN}=\frac{CH}{DH}\)

Xét tam giác DBC có \(\frac{CN}{BN}=\frac{CH}{DH}\) nên áp dụng định lý đảo của định lý Talet ta có HN//BD

b) Gọi giao điểm của MH với BD là G; của AC với NH là K, của OH với GK là J.

Trước hết, ta chứng minh GK//MN. 

Thật vậy, do HM // AC nên theo định lý Ta let ta có \(\frac{MG}{GH}=\frac{AO}{OC}\) 

Do HN//BD (cma) nên \(\frac{KN}{KH}=\frac{OB}{OD}\)

Mà \(\frac{OB}{OD}=\frac{AO}{OC}\Rightarrow\frac{MG}{GH}=\frac{KN}{KH}\)

Theo định lý Ta lét đảo, suy ra GK//MN.

Xét tứ giác OGHK có GO//HK; GH//OK nên OGHK là hình bình hành

Vậy thì J là trung điểm của EK.

Xét tam giác OGK có EF // GK nên ta có :

\(\frac{EI}{GJ}=\frac{FI}{KJ}\Rightarrow\frac{EI}{GJ}=\frac{FI}{GJ}\Rightarrow EI=FI\)

Ta cũng có GK//MN nên :

\(\frac{GJ}{MI}=\frac{KJ}{IN}\Rightarrow MI=NI\Rightarrow ME=NF\)

2 tháng 12 2017

giúp em vs CMR với mọi a,b,c ta có (a^2+2)(b^2+2)(c^2+2)>= 3(a+b+c)^2

18 tháng 2 2020

ta có: góc ACD= góc ABD (vì cùng chắn cung AD nhỏ)

xét tam giác ACG và tam giác DBG có:

góc AGC =góc DGB (2 góc đối đỉnh)

góc ACG= góc DBG (cmt)

=> tam giác AGC ~ tam giác DGB(g-g)

=>\(\frac{AG}{AC}=\frac{DG}{DB}\) \(\Rightarrow\frac{AG}{DG}=\frac{CG}{BG}\)(1)

ta có GM là phân giác góc AGD => \(\frac{AG}{GD}=\frac{AM}{MD}\left(2\right)\)

Ta có: góc CGB = góc AGD (2 góc đối đỉnh)

mà MN là phân giác góc AGD

=> MN là phân giác gócCGB

hay GN là phân giác góc CGB

=> \(\frac{CG}{BG}=\frac{CN}{BN}\)(3)

từ (1);(2) và (3) ta có \(\frac{AM}{MD}=\frac{CN}{NB}\left(đpcm\right)\)