K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2019

a,Ta có : SECD=\(\frac{1}{2}\)DH.EC

\(\Rightarrow EC=\frac{S_{ECD}}{\frac{1}{2}DH}=\frac{6}{\frac{1}{2}.4}=3\left(cm\right)\)

b,Xét \(\Delta ABEvà\Delta EDAcó:\)

\(\widehat{BAE}=\widehat{DEA}\)(2 góc so le trong do AB//ED)

AE là cạnh chung

\(\widehat{BEA}=\widehat{DAE}\)(2 góc so le trong do AD//BC;E\(\in\)BC)

Vậy \(\Delta ABE=\Delta EDA\left(g-c-g\right)\)

\(\Rightarrow BE=DA=5cm\)

c,Ta có : BC=BE+EC(E nằm giữa B và C)

\(\Rightarrow BC=5+3=8cm\)

Ta có : SADBE=DH.BE=4.5=20(cm2)

Ta lại có : SABCD=SADBE+SDEC=20+6=26cm2

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=BC^2-AB^2=13^2-12^2=169-144=25\)

=>\(AC=\sqrt{25}=5\left(cm\right)\)

b: XétΔBAC có BD là phân giác

nên \(\dfrac{AD}{BA}=\dfrac{CD}{BC}\)

=>\(\dfrac{AD}{12}=\dfrac{CD}{13}\)

D nằm giữa A và C

=>AD+DC=AC

=>AD+DC=5(cm)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{12}=\dfrac{CD}{13}=\dfrac{AD+CD}{12+13}=\dfrac{5}{25}=0,2\)

=>\(AD=2\cdot12=2,4\left(cm\right);CD=2\cdot13=2,6\left(cm\right)\)

c: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

=>DA=DH

mà DA=2,4(cm)

nên DH=2,4(cm)

 

a: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)

\(AD=\dfrac{2\cdot3\cdot4}{3+4}\cdot cos45=\dfrac{12}{7}\sqrt{2}\left(cm\right)\)

b: Sửa đề: vuông góc AC

Xét ΔABC vuông tại A và ΔHDC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHDC

16 tháng 3 2022

a, Theo định lí Pytago tam giác ABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=4cm\)

Vì BD là pg nên \(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{DC}{BC}=\dfrac{AD}{AB}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{DC}{BC}=\dfrac{AD}{AB}=\dfrac{4}{8}=\dfrac{1}{2}\Rightarrow DC=\dfrac{5}{2}cm;AD=\dfrac{3}{2}\)cm 

b, Vì DE // AB Theo hệ quả Ta lét 

\(\dfrac{DC}{AC}=\dfrac{DE}{AB}\Rightarrow DE=\dfrac{AB.DC}{AC}=\dfrac{15}{8}\)cm