Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có : SECD=\(\frac{1}{2}\)DH.EC
\(\Rightarrow EC=\frac{S_{ECD}}{\frac{1}{2}DH}=\frac{6}{\frac{1}{2}.4}=3\left(cm\right)\)
b,Xét \(\Delta ABEvà\Delta EDAcó:\)
\(\widehat{BAE}=\widehat{DEA}\)(2 góc so le trong do AB//ED)
AE là cạnh chung
\(\widehat{BEA}=\widehat{DAE}\)(2 góc so le trong do AD//BC;E\(\in\)BC)
Vậy \(\Delta ABE=\Delta EDA\left(g-c-g\right)\)
\(\Rightarrow BE=DA=5cm\)
c,Ta có : BC=BE+EC(E nằm giữa B và C)
\(\Rightarrow BC=5+3=8cm\)
Ta có : SADBE=DH.BE=4.5=20(cm2)
Ta lại có : SABCD=SADBE+SDEC=20+6=26cm2
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=BC^2-AB^2=13^2-12^2=169-144=25\)
=>\(AC=\sqrt{25}=5\left(cm\right)\)
b: XétΔBAC có BD là phân giác
nên \(\dfrac{AD}{BA}=\dfrac{CD}{BC}\)
=>\(\dfrac{AD}{12}=\dfrac{CD}{13}\)
D nằm giữa A và C
=>AD+DC=AC
=>AD+DC=5(cm)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{12}=\dfrac{CD}{13}=\dfrac{AD+CD}{12+13}=\dfrac{5}{25}=0,2\)
=>\(AD=2\cdot12=2,4\left(cm\right);CD=2\cdot13=2,6\left(cm\right)\)
c: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
=>DA=DH
mà DA=2,4(cm)
nên DH=2,4(cm)
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC