Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDAB và ΔCBD có
góc DAB=góc CBD
góc ABD=góc BDC
=>ΔDAB đồng dạng với ΔCBD
b: ΔDAB đồng dạng với ΔCBD
=>DA/CB=DB/CD=AB/BD
=>3/4=DB/CD=5/BD
=>BD=5:3/4=20/3cm; DB^2=5*CD
=>5*CD=400/9
=>CD=80/9cm
a. Ta thấy góc DAB = góc DBC (gt) và góc ABD = góc BDC (So le trong) nên \(\Delta DAB\sim\Delta CBD\left(g-g\right)\)
b. Ta có: \(\frac{DA}{BC}=\frac{AB}{BD}\Rightarrow\frac{3}{4}=\frac{5}{BD}\Rightarrow BD=\frac{20}{3}\)
\(\frac{AB}{BC}=\frac{BD}{DC}\Rightarrow DC=\frac{4.20}{3}:3=\frac{80}{9}\)
c. Ta thấy \(\frac{S_{ABD}}{S_{BDC}}=\left(\frac{3}{4}\right)^2=\frac{9}{16}\Rightarrow\frac{S_{ABD}}{S_{ABCD}}=\frac{9}{25}\Rightarrow S_{ABCD}=\frac{125}{9}\left(cm^2\right)\)
Chúc em học tốt :)
https://olm.vn/hoi-dap/detail/52703554140.html
Xem tại link này(Mik gửi cho)
Học tốt!!!!!!!!!!!!
a: Xét ΔADB và ΔBCD có
\(\widehat{BAD}=\widehat{DBC}\)
\(\widehat{ABD}=\widehat{BDC}\)
Do đó: ΔADB\(\sim\)ΔBCD
b: Ta có: ΔADB\(\sim\)ΔBCD
nên DB/CD=AB/BD=AD/BC
=>5/CD=3/5=3,5/BC
=>CD=25/3(cm); BC=35/6(cm)
a. vì AB//CD => góc ABD=góc BDC
xét tam giác ADB và tam giác BCD có:
góc DAB=góc DBC (gt)
góc ABD= góc BDC (cmt)
=> tam giác ADB ~ tam giác BCD (c.c)
b. vì tam giác ADB ~ tam giác BCD
=> \(\dfrac{AD}{BC}\)=\(\dfrac{AB}{BD}\)=\(\dfrac{DB}{CD}\)
=> BC= \(\dfrac{AD.BD}{AB}\)= \(\dfrac{4.6}{3}\)= 8(cm)
=> CD= \(\dfrac{BD^2}{AB}\)= \(\dfrac{6^2}{3}\)= 12 (cm)
a, Xét tam giác ADB và tam giác BCD có
^DAB = ^CBD ; ^ABD = ^CDB ( soletrong)
Vậy tam giác ADB ~ tam giác BCD (g.g)
b, \(\dfrac{AD}{BC}=\dfrac{AB}{BD}\Rightarrow BC=\dfrac{AD.BD}{AB}=\dfrac{7}{10}cm\)
\(\dfrac{DB}{CD}=\dfrac{AB}{BD}\Rightarrow CD=\dfrac{BD^2}{AB}=1cm\)
c, Ta có \(\dfrac{S_{ADB}}{S_{BCD}}=\left(\dfrac{AD}{BC}\right)^2=25\)