K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2018

Đáp án D

Phương trình hoành độ giao điểm của (C)và trục Ox là ln x = 0 ⇔ x = 1

 

Diện tích hình phẳng (H) là S = π . ∫ 1 k lnx d x = π . ∫ 1 k lnx d x . Đặt u = ln x d v = d x ⇔ d u = d x x v = x .

  ⇒ ∫ 1 1 ln x d x = x . ln x 1 k - ∫ 1 k d x = x . ln x - x 1 k = k . ln k - k + 1 = 1 ⇔ ln k = 1 ⇔ k = e .

20 tháng 8 2018

6 tháng 1 2017

Đáp án D.

25 tháng 6 2019

Đáp án C

2 tháng 5 2017

 

 

 

 

 

( E ) : x 2 16 + y 2 9 = 1   ⇒ y = ± 3 4 16 - x 2

Đường thằng x = k chia elip thành hai phần (H) và (K) khi đó

V H = π ∫ - 4 k 3 14 16 - x 2 dx = 1 4 π 48 x - x 3 - 4 k = 1 4 π 48 k - k 3 + 128

V H V K = 48 k - k 3 + 128 128 - 48 k + k 3 = 5 27 ⇒ 48 k - k 3 + 128 256 = 5 32 ⇒ k 3 - 48 k - 88 = 0

với k nguyên âm k = -2

Đáp án cần chọn là C

1 tháng 10 2017

Phương trình hoành độ giao điểm: 

Ta có:


 

18 tháng 10 2018

Đáp án A

Phương trình hoành độ giao điểm của đồ thị hàm số  y = x 2 − 6 x + 9  và trục hoành là:

x 2 − 6 x + 9 = 0 ⇔ x = 0 .  

Diện tích hình phẳng (H) giới hạn bởi đồ thị hàm số  y = x 2 − 6 x + 9  và 2 đường thẳng x= 0; y = 0 là:

Phương trình đường thẳng (d) có hệ số góc k và cắt trục tung tại điểm A(0;4) là: y = kx +4

Gọi B là giao điểm của (d) và trục hoành  ⇒ B − 4 k ; 0 .  

Để (d) chia (H) thành 2 phần có diện tích bằng nhau thì:

.

14 tháng 3 2018

Đáp án A

Phương trình hoành độ giao điểm của đồ thị hàm số  y = x 2 − 6 x + 9  và trục hoành là:

x 2 − 6 x + 9 = 0 ⇔ x = 0 .  

Diện tích hình phẳng (H) giới hạn bởi đồ thị hàm số  y = x 2 − 6 x + 9 và 2 đường thẳng x= 0; y = 0 là:

Phương trình đường thẳng (d) có hệ số góc k và cắt trục tung tại điểm A(0;4) là: y = kx +4

Gọi B là giao điểm của (d) và trục hoành  ⇒ B − 4 k ; 0 .  

Để (d) chia (H) thành 2 phần có diện tích bằng nhau thì:

28 tháng 6 2017

Đáp án A

Phương trình hoành độ giao điểm của đồ thị hàm số  y = x 2 − 6 x + 9  và trục hoành là:

x 2 − 6 x + 9 = 0 ⇔ x = 0 .  

Diện tích hình phẳng (H) giới hạn bởi đồ thị hàm số  y = x 2 − 6 x + 9  và 2 đường thẳng x= 0; y = 0 là:

Phương trình đường thẳng (d) có hệ số góc k và cắt trục tung tại điểm A(0;4) là: y = kx +4

Gọi B là giao điểm của (d) và trục hoành  ⇒ B − 4 k ; 0 .  

Để (d) chia (H) thành 2 phần có diện tích bằng nhau thì:

 

3 tháng 11 2018

Chọn A.

S   =   S 1   +   S 2 = ∫ 0 ln 8 e x d x   =   7 Do   S 1   =   S 2   ⇒ S 1   =   7 2 ⇒ ∫ 0 k e x d x = 7 2 ⇔ e k - 1 = 7 2 ⇔ k   =   ln 9 2 .