K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2018

Giải bài tập Toán 11 | Giải Toán lớp 11

7 tháng 12 2017

Đ E I ( 1 )   = ( 8 ) ; T D I → ( 8 )   =   ( 3 ) .

   A. Phép đối xứng tâm I và phép đối xứng trục IB thì (1) không biến thành hình nào từ (2) đến (8).

   B. Phép đối xứng tâm I và phép quay tâm I góc quay 90 o  (1) không biến thành hình nào từ (2) đến (8)

   D.phép tịnh tiến theo  A I →  và phép đối xứng tâm I thì hình (1) thành hình (2)

Đáp án C

27 tháng 11 2019

- Phép đối xứng qua tâm I biến ΔAEI thành ΔCFI

- Phép đối xứng qua trục d biến ΔCFI thành ΔFCH

12 tháng 11 2018

Giải bài 1 trang 97 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 1 trang 97 sgk Hình học 11 | Để học tốt Toán 11

12 tháng 12 2019

a) Ta có AB′ // DC′. Gọi là góc giữa AB'và BC', khi đó α = ∠DC′B.

Vì tam giác BC'D đều nên α   =   60 ο

b) Gọi β là góc giữa AC' và CD'.

Vì CD' ⊥ C'D và CD' ⊥ AD ( do AD ⊥ (CDD'C')

Ta suy ra CD' ⊥ (ADC'B')

Vậy CD' ⊥ AC' hay  β   =   90 ο

Chú ý: Ta có thể chứng minh  β   =   90 ο  bằng cách khác như sau:

Gọi I và K lần lượt là trung điểm của các cạnh BC và A'D'. Ta có IK // CD′. Dễ dàng chứng minh được AIC'K là một hình bình hành có bốn cạnh bằng nhau và đó là một hình thoi. Vậy AC' ⊥ IK hay AC'⊥CD' và góc  β   =   90 ο .

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Vì ABCD.EFGH là hình hộp nên BG //AH.

Vì A thuộc mặt phẳng (ABFE) nên H là hình chiếu của A trên mặt phẳng (CDHG) theo phương BG.

3 tháng 2 2017

Chọn B.

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

- Ta có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

- + Các bộ véctơ ở phương án A, C, D không thể có giá cùng song song với một mặt phẳng.

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

28 tháng 12 2021

HELPPPPPP

NV
8 tháng 3 2022

1. Do \(EG||AC\Rightarrow\widehat{\left(\overrightarrow{AF};\overrightarrow{EG}\right)}=\widehat{\left(\overrightarrow{AF};\overrightarrow{AC}\right)}=\widehat{FAC}\)

Mà \(AF=AC=CF=AB\sqrt{2}\Rightarrow\Delta ACF\) đều

\(\Rightarrow\widehat{FAC}=60^0\)

2.

Do I;J lần lượt là trung điểm SC, BC \(\Rightarrow IJ\) là đường trung bình tam giác SBC

\(\Rightarrow IJ||SB\)

Lại có \(CD||BA\Rightarrow\widehat{\left(IJ;CD\right)}=\widehat{SB;BA}=\widehat{SBA}=60^0\) (do các cạnh của chóp bằng nhau nên tam giác SAB đều)