Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đ E I ( 1 ) = ( 8 ) ; T D I → ( 8 ) = ( 3 ) .
A. Phép đối xứng tâm I và phép đối xứng trục IB thì (1) không biến thành hình nào từ (2) đến (8).
B. Phép đối xứng tâm I và phép quay tâm I góc quay 90 o (1) không biến thành hình nào từ (2) đến (8)
D.phép tịnh tiến theo A I → và phép đối xứng tâm I thì hình (1) thành hình (2)
Đáp án C
- Phép đối xứng qua tâm I biến ΔAEI thành ΔCFI
- Phép đối xứng qua trục d biến ΔCFI thành ΔFCH
a) Ta có AB′ // DC′. Gọi là góc giữa AB'và BC', khi đó α = ∠DC′B.
Vì tam giác BC'D đều nên α = 60 ο
b) Gọi β là góc giữa AC' và CD'.
Vì CD' ⊥ C'D và CD' ⊥ AD ( do AD ⊥ (CDD'C')
Ta suy ra CD' ⊥ (ADC'B')
Vậy CD' ⊥ AC' hay β = 90 ο
Chú ý: Ta có thể chứng minh β = 90 ο bằng cách khác như sau:
Gọi I và K lần lượt là trung điểm của các cạnh BC và A'D'. Ta có IK // CD′. Dễ dàng chứng minh được AIC'K là một hình bình hành có bốn cạnh bằng nhau và đó là một hình thoi. Vậy AC' ⊥ IK hay AC'⊥CD' và góc β = 90 ο .
Vì ABCD.EFGH là hình hộp nên BG //AH.
Vì A thuộc mặt phẳng (ABFE) nên H là hình chiếu của A trên mặt phẳng (CDHG) theo phương BG.
Chọn B.
- Ta có:
- + Các bộ véctơ ở phương án A, C, D không thể có giá cùng song song với một mặt phẳng.
1. Do \(EG||AC\Rightarrow\widehat{\left(\overrightarrow{AF};\overrightarrow{EG}\right)}=\widehat{\left(\overrightarrow{AF};\overrightarrow{AC}\right)}=\widehat{FAC}\)
Mà \(AF=AC=CF=AB\sqrt{2}\Rightarrow\Delta ACF\) đều
\(\Rightarrow\widehat{FAC}=60^0\)
2.
Do I;J lần lượt là trung điểm SC, BC \(\Rightarrow IJ\) là đường trung bình tam giác SBC
\(\Rightarrow IJ||SB\)
Lại có \(CD||BA\Rightarrow\widehat{\left(IJ;CD\right)}=\widehat{SB;BA}=\widehat{SBA}=60^0\) (do các cạnh của chóp bằng nhau nên tam giác SAB đều)