Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: D,E lần lượt là hình chiếu của H trên AB,AC
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
b: Ta có: ADHE là hình chữ nhật
=>\(\widehat{AED}=\widehat{AHD}\)
mà \(\widehat{AHD}=\widehat{B}\left(=90^0-\widehat{HAB}\right)\)
nên \(\widehat{AED}=\widehat{B}\)
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MB=MC
Ta có: MA=MC
=>ΔMAC cân tại M
=>\(\widehat{MAC}=\widehat{MCA}\)
Ta có: \(\widehat{MAC}+\widehat{AED}\)
\(=\widehat{MCA}+\widehat{B}\)
\(=90^0\)
=>AM\(\perp\)DE
c: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>\(AH=\dfrac{48}{10}=4,8\left(cm\right)\)
Ta có: ADHE là hình chữ nhật
=>DE=AH
mà AH=4,8cm
nên DE=4,8cm
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//PC và MN=PC
=>NCPM là hình bình hành
b; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MP
hay góc BMP=90 độ
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Hình bình hành ABDC có \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
=>AD=BC
mà BC=10cm
nên AD=10cm
b: Xét ΔMHA vuông tại H và ΔMKD vuông tại K có
MA=MD
\(\widehat{HMA}=\widehat{KMD}\)(hai góc đối đỉnh)
Do đó: ΔMHA=ΔMKD
=>MH=MK
=>M là trung điểm của HK
Xét tứ giác AHDK có
M là trung điểm chung của AD và HK
=>AHDK là hình bình hành
=>AK//DH
c: E đối xứng A qua BC
=>BC là đường trung trực của AE
=>BC\(\perp\)AE tại trung điểm của AE(1)
Ta có: BC\(\perp\)AE
BC\(\perp\)AH
AE,AH có điểm chung là A
Do đó: E,A,H thẳng hàng(2)
Từ (1) và (2) suy ra H là trung điểm của AE
Xét ΔADE có
H,M lần lượt là trung điểm của AE,AD
=>HM là đường trung bình của ΔADE
=>HM//DE
mà \(H\in BC;M\in\)BC
nên DE//BC
Xét ΔCAE có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAE cân tại C
=>CA=CE
mà CA=BD(ABDC là hình chữ nhật)
nên CE=BD
Xét tứ giác BEDC có DE//BC
nên BEDC là hình thang
Hình thang BEDC có BD=CE
nên BEDC là hình thang cân
a,BC= 25 và AO=12,5
b,ta có tứ giác abcd có gốc a bằng 90 độ(giả thiết ) cb = ad
a: Xét ΔHAB có
N là trung điểm của HB
M là trung điểm của HA
Do đó: NM là đường trung bình của ΔAHB
Suy ra: \(NM=\dfrac{AB}{2}=2\left(cm\right)\)
(Tự vẽ hình) Sửa đề: Phân giác của góc BCD cắt BD tại I
b) Do \(CI\) là phân giác nên ta có: \(\dfrac{IB}{ID}=\dfrac{BC}{CD}\)
Mặt khác: \(\Delta AHB\sim\Delta BCD\) (câu a)
\(\Rightarrow\dfrac{BC}{CD}=\dfrac{AH}{HB}\Rightarrow\dfrac{IB}{ID}=\dfrac{AH}{HB}\Rightarrow IB.HB=ID.AH\)
a: Xét ΔABH vuông tại H và ΔACB vuông tại B có
góc BAH chung
Do đó: ΔABH đồng dạng với ΔACB
b: ΔABC vuông tại B
=>AC^2=AB^2+BC^2=100
=>AC=10cm
ΔBAC vuông tại B có BH là đường cao
nên AH*AC=AB^2 và BH*AC=BA*BC
=>AH*10=36 và BH*10=6*8=48
=>HA=3,6cm; BH=4,8cm
c: Xét ΔHBC có HE/HB=HK/HC
nên EK//BC
=>góc HEK=góc HBC=góc HAB
Xét ΔHEK vuông tại H và ΔHAB vuông tại H có
góc HEK=góc HAB
Do đó: ΔHEk đồng dạng với ΔHAB
=>HE/HA=EK/AB
=>HE*AB=EK*HA