Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo lời giải tại link : https://h.vn/hoi-dap/question/249043.html
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)
Do đó: ΔAHB\(\sim\)ΔBCD
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔADH\(\sim\)ΔBDA
Suy ra: \(\dfrac{AD}{BD}=\dfrac{HD}{DA}\)
hay \(AD^2=HD\cdot BD\)
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
ˆABH=ˆBDCABH^=BDC^
Do đó: ΔAHB∼∼ΔBCD
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
ˆADHADH^ chung
Do đó: ΔADH∼∼ΔBDA
Suy ra: ADBD=HDDAADBD=HDDA
hay AD2=HD⋅BD
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
góc ABH=góc BDC
=>ΔAHB đồng dạng với ΔBCD
b: ED/EB=AD/AB
mà AD/AB=HB/AH
nên ED/EB=HB/AH
=>ED*AH=EB*HB
A B C D H
+) AB // CD => góc ABD = BDC (SLT)
Xét tam giác AHB và BCD có : góc AHD = DCB (=90o); góc ABH = BDC
=> tam giác AHB đồng dạng với tam giác BCD ( g- g)
=> AH/BC = AB/BD
+) Áp dụng ĐL Pi ta go trong tam giác ABD có: BD2 = AB2 + AD2 = 82 + 62 = 102 => BD = 10 cm
=> AH/6 = 8/10 => AH = 4,8 cm
+) Áp dụng ĐL Pi ta go trong tam giác ABH có: BH2 = AB2 - AH2 = 82 - 4,82 = 40,96 cm => BH = 6,4 cm
=> S(ABH) = AH.BH : 2 = .....
(Tự vẽ hình) Sửa đề: Phân giác của góc BCD cắt BD tại I
b) Do \(CI\) là phân giác nên ta có: \(\dfrac{IB}{ID}=\dfrac{BC}{CD}\)
Mặt khác: \(\Delta AHB\sim\Delta BCD\) (câu a)
\(\Rightarrow\dfrac{BC}{CD}=\dfrac{AH}{HB}\Rightarrow\dfrac{IB}{ID}=\dfrac{AH}{HB}\Rightarrow IB.HB=ID.AH\)