K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2019

a)Vì tam giác ABCD là HCN =>góc A = 90 độ

xét tam giác AHD VÀ TAM GIÁC ABD CÓ ;

GÓC D CHUNG

GÓC AHD = GÓC A

=>TAM GIÁC AHD ĐỒNG DẠNG VỚI TAM GIÁC BAD(G.G)

B)vÌ TAM GIÁC AHD ĐỒNG DẠNG VỚI TAM GIÁC BAD (THEO CÂU A)

=>GÓC HAD=GÓC ABD(1)

XÉT TAM GIÁC AHD VÀ TAM GIÁC AHB CÓ :

GÓC AHD = GÓC AHB (=90 ĐỘ )

GÓC HAD= GÓC ABD (THEO 1)

=>TAM GIÁC AHD ĐỒNG DẠNG VỚI TAM GIÁC BHA(G.G)

=>AH/HD=BH/AH

=>AH^2=BH.HD(DPCM)

a) Xét ΔAHD vuông tại H và ΔBAD vuông tại A có 

\(\widehat{ABD}\) chung

Do đó: ΔAHD∼ΔBAD(g-g)

Áp dụng định lí Pytago vào ΔADH vuông tại H, ta được:

\(AH^2+HD^2=AD^2\)

\(\Leftrightarrow HD^2=AD^2-AH^2=5^2-4^2=9\)

hay HD=3(cm)

Ta có: ΔAHD∼ΔBAD(cmt)

nên \(\dfrac{AH}{BA}=\dfrac{HD}{AD}=\dfrac{AD}{BD}\)

\(\Leftrightarrow\dfrac{4}{AB}=\dfrac{3}{5}\)

hay \(AB=\dfrac{20}{5}cm\)

Vậy: \(AB=\dfrac{20}{5}cm\)

b) Xét ΔAHD vuông tại H và ΔBHA vuông tại H có 

\(\widehat{HAD}=\widehat{HBA}\left(=90^0-\widehat{ADH}\right)\)

Do đó: ΔAHD∼ΔBHA(g-g)

\(\dfrac{AH}{BH}=\dfrac{HD}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(HA^2=HB\cdot HD\)(đpcm)

a: Xét ΔAHD vuông tại H và ΔBAD vuông tại A có

góc D chung

=>ΔAHD đồng dạng với ΔBAD

b; Xét ΔDEA vuông tại D và ΔADB vuông tại A có

góc DEA=góc ADB

=>ΔDEA đồng dạng với ΔADB

=>DE/AD=AD/AB

=>AD^2=DE*AB

c: AD^2=DE*AB

=>DE=3^2/4=2,25cm

a: BD\(\perp\)BA

CA\(\perp\)BA

Do đó: BD//CA

Xét ΔEAC có BD//AC

nên \(\dfrac{EB}{BA}=\dfrac{ED}{DC}\)

b:

AC//BD

BD//IK

Do đó: AC//IK

Xét ΔAEI có BD//EI

nên \(\dfrac{DB}{EI}=\dfrac{AB}{AE}\)(1)

Xét ΔCEK có DB//EK

nên \(\dfrac{DB}{EK}=\dfrac{CD}{CE}\left(2\right)\)

\(\dfrac{EB}{EA}=\dfrac{DE}{DC}\)

=>\(\dfrac{EB+EA}{EA}=\dfrac{DE+DC}{DC}\)

=>\(\dfrac{AB}{EA}=\dfrac{CE}{DC}\)(3)

Từ (1),(2),(3) suy ra \(\dfrac{DB}{EI}=\dfrac{DB}{EK}\)

=>EI=EK

 

1) Cho hình chữ nhật ABCD có AB > AD. Vẽ AH vuông góc với BD tại điểm H.   a. Chứng minh △AHB và △BCD đồng dạng    b. Chứng minh BC.AB = AH.BD     c. Tia AH cắt cạnh DC tại M và cắt tia BC tại K. Chứng minh \(HA^2=HK.HM\)2) Cho hình bình hành ABCD, trên tia đối của tia BA lấy BN = AD   a. Chứng minh: △CBN và △CDM cân    b. Chứng minh: △CBN \(\sim\) △MDN    c. Chứng minh: M,C,N thẳng hàng3) Cho △ABC vuông tại A (AB < AC)...
Đọc tiếp

1) Cho hình chữ nhật ABCD có AB > AD. Vẽ AH vuông góc với BD tại điểm H.

   a. Chứng minh △AHB và △BCD đồng dạng

    b. Chứng minh BC.AB = AH.BD 

    c. Tia AH cắt cạnh DC tại M và cắt tia BC tại K. Chứng minh \(HA^2=HK.HM\)

2) Cho hình bình hành ABCD, trên tia đối của tia BA lấy BN = AD

   a. Chứng minh: △CBN và △CDM cân

    b. Chứng minh: △CBN \(\sim\) △MDN

    c. Chứng minh: M,C,N thẳng hàng

3) Cho △ABC vuông tại A (AB < AC) có đường cao AH.

   a. Chứng minh: △ABH\(\sim\)△CBA

    b. Chứng minh: \(AH^2=BH.HC\)

    c. Trên đường thẳng vuông góc với AC tại C, lấy điểm D sao cho CD=AB (D và B nằm khác phía so với đường thẳng AC). Đoạn thẳng HD cắt đoạn thẳng AC tại S. Kẻ \(\text{AF}\perp H\text{S }t\text{ại F}\)

Chứng minh BH.CH = HF.HD

1

3:

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA

=>ΔHAB đồng dạng với ΔHCA

=>HA/HC=HB/HA

=>HA^2=HB*HC

 

Giải giúp mik nhanh chút nhe

4 tháng 4 2019

anh làm câu a và b đi ạ cho em xem em lớp 7 ko biết làm chỉ tham khảo thôi