K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BD\(\perp\)BA

CA\(\perp\)BA

Do đó: BD//CA

Xét ΔEAC có BD//AC

nên \(\dfrac{EB}{BA}=\dfrac{ED}{DC}\)

b:

AC//BD

BD//IK

Do đó: AC//IK

Xét ΔAEI có BD//EI

nên \(\dfrac{DB}{EI}=\dfrac{AB}{AE}\)(1)

Xét ΔCEK có DB//EK

nên \(\dfrac{DB}{EK}=\dfrac{CD}{CE}\left(2\right)\)

\(\dfrac{EB}{EA}=\dfrac{DE}{DC}\)

=>\(\dfrac{EB+EA}{EA}=\dfrac{DE+DC}{DC}\)

=>\(\dfrac{AB}{EA}=\dfrac{CE}{DC}\)(3)

Từ (1),(2),(3) suy ra \(\dfrac{DB}{EI}=\dfrac{DB}{EK}\)

=>EI=EK

 

23 tháng 12 2023

a: Ta có: DB\(\perp\)AB

AC\(\perp\)AB

Do đó: DB//AC

Xét ΔECA có DB//AC

nên \(\dfrac{BE}{BA}=\dfrac{DE}{DC}\)

b: Xét ΔCEK có DB//EK

nên \(\dfrac{DB}{EK}=\dfrac{CD}{CE}\)(1)

Xét ΔAEI có DB//EI

nên \(\dfrac{DB}{EI}=\dfrac{AB}{AE}\left(2\right)\)

Ta có: \(\dfrac{BE}{BA}=\dfrac{DE}{DC}\)

=>\(\dfrac{BE+BA}{BA}=\dfrac{DE+DC}{DC}\)

=>\(\dfrac{AE}{BA}=\dfrac{CE}{DC}\)

=>\(\dfrac{CD}{CE}=\dfrac{AB}{AE}\left(3\right)\)

Từ (1),(2),(3) suy ra EI=EK

a: Xét ΔOAD và ΔOMK có

\(\widehat{OAD}=\widehat{OMK}\)(hai góc so le trong, AD//MK)

\(\widehat{AOD}=\widehat{MOK}\)

Do đó: ΔOAD đồng dạng với ΔOMK

=>\(\dfrac{OA}{OM}=\dfrac{OD}{OK}\)

=>\(OA\cdot OK=OM\cdot OD\)

b: Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{CA}\)

=>\(\dfrac{BD}{5}=\dfrac{CD}{10}\)

=>\(\dfrac{BD}{1}=\dfrac{CD}{2}\)

mà BD+CD=BC=12

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{1}=\dfrac{CD}{2}=\dfrac{BD+CD}{1+2}=\dfrac{12}{3}=4\)

=>\(BD=4\left(cm\right);CD=8\left(cm\right)\)

c: ME//AD

=>\(\widehat{AEK}=\widehat{DAC}\)(hai góc so le trong)(1)

KM//AD

=>\(\widehat{AKE}=\widehat{BAD}\)(hai góc đồng vị)(2)

AD là phân giác của góc BAC

=>\(\widehat{BAD}=\widehat{CAD}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\widehat{AEK}=\widehat{AKE}\)

=>AE=AK

Xét ΔCAD có EM//AD

nên \(\dfrac{CE}{CA}=\dfrac{CM}{CD}\)

=>\(\dfrac{CE}{CM}=\dfrac{CA}{CD}\)

mà \(\dfrac{CA}{CD}=\dfrac{BA}{BD}\)

nên \(\dfrac{CE}{CM}=\dfrac{BA}{BD}\)

=>\(\dfrac{AB}{BD}=\dfrac{EC}{CM}\)

=>\(\dfrac{AB}{EC}=\dfrac{BD}{CM}\)(ĐPCM)