Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bn tự kẻ hình nha!!
Gọi I là trung điểm của AH
Ta có IM là đg trug bình t.giác AHB
- -> IM=1/2AB và IM sog sog vs AB
- ->IMND là hình bình hành
- ->DI sog sog vs MN(1)
Do IM sog sog vs AB->IM vuông góc vs AD
Tg ADM có các đg cao AH và MI cắt nhau tại I
- -> DI vuông góc vs AM(2)
Từ (1) và (2) suy ra AM vuông góc vs MN
Tg AMN vuông tại M
Ta có :AM^2+MN^2=AN^2
Lại có:Tg ADN vuông tại D
- ->AN^2=AD^2+DN^2+AD^2/4=4^2+3^2=25
- Vậy MA^2+NM^2=25
vì sao IMND là hình bình hành vậy.
Nếu bài này ko cm như trên mà chứng minh MA vuông góc MN thì làm như nào ạ .
a: Xét ΔODK có AH//DK
nên AH/DK=OH/OK
Xét ΔOKC có HB//KC
nên HB/KC=OH/OK
=>AH/DK=HB/KC
mà AH=HB
nên DK=KC
=>K là trung điểm của CD
b: Xét ΔMAB và ΔMKD có
góc MAB=góc MKD
góc AMB=góc KMD
Do đo: ΔMAB đồng dạng với ΔMKD
=>MA/MK=AB/DK
=>MK/MA=DK/AB
Xét ΔNKC và ΔNBA có
góc NKC=góc NBA
góc KNC=góc BNA
Do đó: ΔNKC đồng dạng với ΔNBA
=>NK/NB=KC/BA=KD/AB=MK/MA
=>MN//AB
Cái hình câu 1 logic lắm !!!
đáng lẽ cái đường thẳng E nó pk trùng với cái tia chéo kia ( tia tia tui vẽ cx chả đều => lười sửa )
phần còn lại tự giải quyết
hk tốt
a: \(AC=\sqrt{15^2+8^2}=17\left(cm\right)\)
OD=AC/2=8,5cm
b: Xét tứ giác ADPC có
M là trung điểm chung của AP và DC
nên ADPC là hình bình hành
=>DP=AC=2OC
c: Xét tứ giác OBEC có
N là trung điểm chung của OE và bC
OB=OC
Do dó: OBEC là hình thoi