Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Rễ thấy Δ C D N = Δ D A M ⇒ D C N ^ = A D M ^
mà C D H ^ + M D H ^ = 90 0 ⇒ C D H ^ + D C H ^ = 90 0 ⇒ C H ⊥ D H
mà C H ⊥ S H do S H ⊥ A B C D ⇒ D H ⊥ S C H .
Như vậy kẻ H K ⊥ S C thì HK là đường vuông góc chung của DM và SC hay HK là khoảng cách cần xác định.
Áp dụng hệ thức lượng trong tam giác vuông ta có:
C D 2 = C H . C N ⇒ C H = C D 2 C N = C D 2 C D 2 + D N 2 = 4 a 2 4 a 2 + a 2 = 2 a 5
1 H K 2 = 1 S H 2 + 1 C H 2 = 1 9 a 2 + 5 16 s 2 = 61 144 a 2 ⇒ H K = 12 a 61 61
Đáp án C
Hạ A H ⊥ S B ⇒ A H ⊥ S B C
S B C ; A B C D = A H ; S A = ∠ S A H = 45 0 ⇒ S A = A B = a S C D M N = S A B C D − S A N M − S B N M = a 2 − 1 2 a 2 a 2 − 1 2 a 2 a = 5 a 2 8 V S . C D M N = 1 3 S A . S C D M N = 1 3 a 5 a 2 8 = 5 a 3 24
Đáp án D
Dựng HK ⊥ BD, do SH ⊥ BD nên ta có:
(SKH) ⊥ BD => Góc giữa hai mặt phẳng (SBD) và mặt phẳng đáy là góc SKH = 600
Lại có:
Do đó
Vậy
Đáp án A
Phương pháp: Xác định góc giữa hai mặt phẳng bằng cách xác định góc giữa hai đường thẳng lần lượt vuông góc với giao tuyến.
Cách giải:
Kẻ IH ⊥ CD ta có:
Ta có:
Gọi E là trung điểm của AB => EC = AD = 2a
Từ giả thiết ta có AB = a; SA = a 2 ; SB = a 3 2
∆ A B C vuông tại S ⇒ S H = A B 2 ⇒ ∆ S . A H đều.
Gọi M là trung điểm của AH thì S M ⊥ A B
Do S A B ⊥ A B C D nên S M ⊥ A B C D
Vậy V = 1 3 S M . S K C D = a 3 32
Đáp án D
Vì S H ⊥ A B C D nên
V S . C D M N = 1 3 S H . S . C D M N = 1 3 S H . S A B C D - S B C M - S A M N = 1 3 a 3 5 8 a 2 = 5 3 24 a 3
Đáp án B