K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2016

Áp dụng BĐT tam giác ta có:

a+b>c =>c-a<b =>c2-2ac+a2<b2

a+c>b =>b-c <a =>b2-2bc+c2<a2

b+c>a =>a-b<c =>a2-2ab+b2<c2

Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2

<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2

<=>-2(ab+bc+ca)<-(a2+b2+c2)

<=>2.(ab+bc+ca)<a2+b2+c2

 

17 tháng 6 2019

15.

Ta  có \(a+b+c+ab+bc+ac=6\)

Mà \(ab+bc+ac\le\left(a+b+c\right)^2\)

=> \(\left(a+b+c\right)^2+\left(a+b+c\right)-6\ge0\)

=> \(a+b+c\ge3\)

\(A=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\ge3\)(ĐPCM)

17 tháng 6 2019

Bài 18, Đặt \(\left(a^2-bc;b^2-ca;c^2-ab\right)\rightarrow\left(x;y;z\right)\) thì bđt trở thành

\(x^3+y^3+z^3\ge3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\ge0\)

\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\)

Vì \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)nên ta đi chứng minh \(x+y+z\ge0\)

Thật vậy \(x+y+z=a^2-bc+b^2-ca+c^2-ab\)

                                     \(=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)(đúng)

Tóm lại bđt được chứng minh

Dấu "=": tại a=b=c

Câu 1: 

Sửa đề; BC=12cm

a: Xét ΔABD có \(\widehat{B}=\widehat{BAD}=60^0\)

nên ΔABD đều

=>BD=AB=6cm

=>BH=3cm

b: Ta có: BD+DC=BC

nên DC=BC-BD=12-6=6(cm)

Xét ΔDAC có DA=DC

nên ΔDAC cân tại D

c: Xét ΔABC có 

AD là đường trung tuyến

AD=BC/2

Do đó: ΔABC vuông tại A

21 tháng 4 2017

C. Sông Gianh (Quảng Bình)

Sửa đề; BC=12cm

a: Xét ΔABD có \(\widehat{B}=\widehat{BAD}=60^0\)

nên ΔABD đều

=>BD=AB=6cm

=>BH=3cm

b: Ta có: BD+DC=BC

nên DC=BC-BD=12-6=6(cm)

Xét ΔDAC có DA=DC

nên ΔDAC cân tại D

c: Xét ΔABC có 

AD là đường trung tuyến

AD=BC/2

Do đó: ΔABC vuông tại A

31 tháng 1 2017

Câu 1: 

Sửa đề; BC=12cm

a: Xét ΔABD có \(\widehat{B}=\widehat{BAD}=60^0\)

nên ΔABD đều

=>BD=AB=6cm

=>BH=3cm

b: Ta có: BD+DC=BC

nên DC=BC-BD=12-6=6(cm)

Xét ΔDAC có DA=DC

nên ΔDAC cân tại D

c: Xét ΔABC có 

AD là đường trung tuyến

AD=BC/2

Do đó: ΔABC vuông tại A

Bài 2: 

a: Xét tứ giác ABEC có

M là trung điểm của AE
M là trung điểm của BC

Do đó:ABEC là hình bình hành

Suy ra: AC=BE và AC//BE

b: Xét tứ giác AIEK có

AI//KE

AI=KE

Do đó: AIEK là hình bình hành

Suy ra: Hai đường chéo AE và IK cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của AE

nên M là trung điểm của IK

hay I,M,K thẳng hàng

1 tháng 2 2019