K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2017

Phương pháp:

Xác định chiều cao hình chóp bằng kiến thức 

Xác định khoảng cách

Tính toán bằng cách sử dụng quan hệ diện tích, định lý hàm số cosin, công thức tính diện tích tam giác S =  1 2 a.h với a là cạnh đáy, h là chiều cao tương ứng và 

 Cách giải:

Gọi H = AM ∪ BD

Ta có 

Vì AB//CD nên theo định lý Ta-lét ta có

Ta có 

Vì M là trung điểm của DC và ABCD là hình bình hành có diện tích 2 a 2  nên ta có:

Lại có CD = AB = a 2

Khi đó 

Lại có 

Từ đó 

 

Chọn: C

23 tháng 9 2019

19 tháng 6 2019

Chọn D

Ta có 

Gọi H là trung điểm AB thì ,

kẻ , ta có  là góc giữa (SBD) và (ABCD), do đó  = 600

Gọi AM là đường cao của tam giác vuông ABD. Khi đó, ta có:

26 tháng 4 2018

Đáp án C.

8 tháng 6 2019

8 tháng 4 2018

Chọn B

Cách 1

   

 

     

       

Cách 2: Tọa độ hóa

 

28 tháng 3 2016

A B C D S E K H

Gọi H là trung điểm của AB, suy ra \(SH\perp\left(ACBD\right)\)

Do đó \(SH\perp HD\)  ta có :

\(SH=\sqrt{SD^2-DH^2}=\sqrt{SD^2-\left(AH^2+AD^2\right)}=a\)

Suy ra \(V_{s.ABCD}=\frac{1}{3}.SH.S_{ABCD}=\frac{a^2}{3}\)

Gọi K là hình chiếu vuông góc của H trên BD và E là hình chiếu vuông góc của H lên SK. Ta có :

\(\begin{cases}BD\perp HK\\BD\perp SH\end{cases}\) \(\Rightarrow BH\perp\) (SHK)

=> \(BD\perp HE\) mà \(HE\perp SK\) \(\Rightarrow HE\perp\) (SBD)

Ta có : HK=HB.\(\sin\widehat{KBH}\)\(=\frac{a\sqrt{2}}{4}\)

Suy ra \(HE=\frac{HS.HK}{\sqrt{HS^2+HK^2}}=\frac{a}{3}\)

Do đó \(d\left(A:\left(SBD\right)\right)\)=2d(H; (SBD)) =3HE=\(\frac{2a}{3}\)

 

 

30 tháng 3 2016

cau 7 de thi toan thpt quoc gia 2015

23 tháng 1 2018