K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHD vuông tại H và ΔBAD vuông tại A có

góc D chung

=>ΔAHD đồng dạng với ΔBAD

b; Xét ΔDEA vuông tại D và ΔADB vuông tại A có

góc DEA=góc ADB

=>ΔDEA đồng dạng với ΔADB

=>DE/AD=AD/AB

=>AD^2=DE*AB

c: AD^2=DE*AB

=>DE=3^2/4=2,25cm

8 tháng 11 2019

Mik chỉ vẽ đc hình thui

Còn bài thì mik chưa nghĩ ra

Thông cảm nha

13 tháng 9 2021

1.

\(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\left(pytago\right)\)

Áp dụng HTL tam giác 

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=1,8\left(cm\right)\\CH=\dfrac{AC^2}{BC}=3,2\left(cm\right)\\AH=\sqrt{3,2\cdot1,8}=5,76\left(cm\right)\end{matrix}\right.\)

13 tháng 9 2021

2.

Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=BH\cdot HC=HC\\AB^2=BH\cdot BC=BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}HC=4\left(cm\right)\\AB=\sqrt{HC+HB}=\sqrt{4+1}=\sqrt{5}\left(cm\right)\end{matrix}\right.\)

\(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-5}=2\sqrt{5}\left(cm\right)\)

Vậy \(AB=\sqrt{5}\left(cm\right);BC=5\left(cm\right);AC=2\sqrt{5}\left(cm\right)\)

3: 

\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

HB=12^2/20=7,2cm

=>HC=20-7,2=12,8cm

\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)

\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)

19 tháng 6 2018

Vì AE là tia phân giác của góc BAD

➡️Góc BAE = góc EAD = góc BAD ÷ 2 (1)

Xét hình thang ABCD có BC // AD

➡️Góc AEB = góc EAD ( 2 góc so le trong) (2)

Từ (1) và (2) ➡️góc BAE = góc AEB

➡️∆ ABE cân tại B 

➡️BA = BE (đpcm)

b, Vì ∆ ABE cân tại B

➡️BF là tia phân giác đồng thời là đg cao

➡️BF vuông góc với AE

Ta có BF là tia phân giác đồng thời là đg trung tuyến

➡️AF = EF = AE ÷ 2 = 8 ÷ 2 = 4 (cm)

Xét ∆ ABF vuông tại F 

➡️AF2 + BF2 = AB2 ( pitago)

➡️BF2 = AB2 - AF2

➡️BF2 = 52 - 42 

➡️BF = 3 (cm)

Hok tốt nhé~

b: Xét ΔAHB vuông tại H và ΔACE vuông tại E có

góc A chung

=>ΔABH đồng dạng với ΔACE

Xét ΔBHC vuông tại H và ΔCFA vuông tại F có

góc BCA=góc CAF

=>ΔBHC đồng dạng với ΔCFA

c: AB/AC=AH/AE

=>AB*AE=AH*AC

BC/AC=CH/AF=BH/CF

=>DA/AC=CH*AF

=>AC*CH=AD*AF

=>AC^2=AB*AE+AD*AF

Bài 2: 

a:

BC=20cm

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/12=CD/16

=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)

Do đó: BD=60/7(cm); CD=80/7(cm)

b: Xét ΔABC có DE//AB

nên DE/AB=CD/BC

=>DE/12=4/7

hay DE=48/7(cm)