Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi M là trung điểm của AF . Ta có OM là đường trung bình của tam giác ACF
\(=>OM//CF,OM=\frac{1}{2}CF\)
ta lại có \(OM//CF,CF\perp CD\left(gt\right)\)
\(=>OM\perp CD.Mà\left(AB//CD\right)\)
\(=>OM//BE\)(1)
mặt khác OM , AM là 2 đường cao của tam giác ABO
=> M là trực tâm của tam giác ABO
=>\(BM\perp AC.Mà\left(EO\perp AC\right)=>BM//EO\left(2\right)\)
từ 1 zà 2 => tứ giác BMOE là hbh => OM=BE
ta có
\(OM=BE;OM=\frac{1}{2}CF=>BE=\frac{1}{2}CF\left(and\right)BE//OM//CF\)
\(\Delta KCF\)có \(CF//BE=>\frac{KE}{KF}=\frac{BE}{CF}=\frac{1}{2}\)
Vì OE // DC ==> OA/AC = OE/DC (định lý Ta-let) (1)
Vì OF // DC ==> OB/BD = OF/DC (định lý Ta-let) (2)
Vì AB // CD ==> OA/OC = OB/OD (định lý ta-let)
Theo tính chất dãy tỉ số bằng nhau ta có:
OA/OC = OB/OD <=> OA / (OA + OC) = OB / (OB + OD)
<=> OA / AC = OB / BD (3)
Từ (1), (2) và (3) suy ra ta có:
OE / DC = OF / DC <=> OE = OF (đpcm)