K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có BM/BA=BN/BC

nên MN//AC và MN=AC/2

Xét ΔCDA có DP/DC=DQ/DA

nên PQ//CA và PQ=AC/2

=>MN//PQ và MN=PQ

b: Xét tứ giác MNPQ có

MN//PQ

MN=PQ

=>MNPQ là hình bình hành

a: Xét ΔBAC có BM/BA=BN/BC=1/2

nên MN//AC và MN=1/2AC

Xét ΔDAC có DQ/DA=DP/DC

nên PQ//AC và PQ=1/2AC

=>MN//PQ và MN=PQ

b: Xét tứ giác MNPQ có

MN//PQ

MN=PQ

=>MNPQ là hình bình hành

12 tháng 12 2021

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và MN=AC/2(1)

Xét ΔADC có 

Q là trung điểm của AD

P là trung điểm của CD

Do đó: QP là đường trung bình của ΔADC

Suy ra: QP//AC và QP=AC/2(2)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

hay MNPQ là hình bình hành

24 tháng 8 2023

Vì ABCD là hbh nên => AB=DC, AD=BC

có M là tđ của AB, P là trung điểm của DC mà AB=DC=>MB=DP (1)

N là tđ của BC, Q là tđ của AD mà AD=BC=> QD=BN (2)

Có góc QDB=góc MBN (ABCD là hbh) (3)

(1),(2),(3)=> tam giác MPN=tam giác QDP=>QP=MN

tương tự, cm QM=PN=> tứ giác QMNP có QM=BN, QP=MN => Tứ giác MNPQ là hbh( có hai cặp cạnh đối bằng nhau)

7 tháng 8 2019

A B C D M N P Q

a

Do:

MQ là đường trung bình của tam giác ABD nên MQ//BD và MQ=BD/2 (1)

NP là đường trung bình của tam giác CBD nên NP//BD và NP=BD/2 (2)

Từ (1) và (2) suy ra điều phải chứng minh ( có 2 cặp cạnh đối song song và bằng nhau )

b

MNPQ là hình chữ nhật nên QM vuông góc với MN.

Khi đó AC vuông góc với BD.

Vậy hình thang ABCD cần thêm điều kiện AC vuông góc với BD thì MNPQ là hình chữ nhật.

16 tháng 10 2023

a: Xét ΔBAC có

M,N lần lượt là trung điểm của BA,BC

=>MN là đường trung bình

=>MN//AC và \(MN=\dfrac{AC}{2}\left(1\right)\)

Xét ΔDAC có

Q,P lần lượt là trung điểm của DA,DC

=>QP là đường trung bình

=>QP//AC và \(QP=\dfrac{AC}{2}\left(2\right)\)

Từ (1),(2) suy ra MN=PQ

b: MN//AC

PQ//AC

Do đó: MN//PQ

Xét tứ giác MNPQ có

MN//PQ

MN=PQ

Do đó: MNPQ là hình bình hành

a: Xét ΔABD có AM/AB=AQ/AD

nên MQ//BD và MQ=BD/2

Xét ΔCBD có CP/CD=CN/CB

nên NP//BD và NP=BD/2

=>MQ//NP và MQ=NP

=>MNPQ là hình bình hành

b: KHi ABCD là hình thoi thì AC vuông góc với BD

=>MQ vuông góc với MN

=>MNPQ là hình chữ nhật

c: khi ABCD là hình chữ nhật thì AC=BD

=>MN=MQ

=>MNPQ là hình thoi