K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2017

Vì ABCD là hình bình hành nên:

AB = CD (1)

Theo giả thiết:

AE = EB = 1/2 AB (2)

DF = FC = 1/2 CD (3)

Từ (1), (2) và (3) suy ra:

EB = DF và BE // DF.

Suy ra tứ giác BEDF là hình bình hành (vì có cặp cạnh đối song song và bằng nhau)

Suy ra: DE // BF

Ta có:  ∠ (AED) = ∠ (ABF ) (đồng vị)

∠ (ABF) =  ∠ (BFC) (so le trong)

Suy ra:  ∠ (AED) =  ∠ ( BFC)

Xét  △ AED'và  △ CFB ta có:

∠ (AED) = ∠ ( BFC) (chứng minh trên)

∠ A =  ∠ C (tính chất hình bình hành)

Vậy: △ AED đồng dạng  △ CFB (g.g)

21 tháng 3 2019

Vì CD = 2AB (gt) nên AB = 1/2 CD

Vì E là trung điểm của CD nên DE = EC = 1/2 CD

Suy ra: AB = DE = EC

Hình thang ABCD có đáy AB = EC nên hai cạnh bên AE và BC song song với nhau

Xét △ AEB và  △ CBE, ta có:

∠ (ABE) =  ∠ ( BEC)(So le trong)

∠ (AEB) = (EBC) (so le trong)

BE cạnh chung

⇒ △ AEB = △ CBE (g.c.g) (1)

Hình thang ABCE có đáy AB = DE nên hai cạnh bên AD và BE song song với nhau

Xét  △ AEB và  △ EAD, ta có:

∠ (BAE) =  ∠ (AED)(so le trong)

∠  (AEB) =  ∠ (EAD) (so le trong)

AE cạnh chung

⇒ △  AEB = △ EAD(g.c.g) (2)

Từ (1) và (2) suy ra: ΔAEB = ΔCBE = ΔEAD

Vậy ba tam giác  △ AEB;  △ CBE và  △ EAD đôi một đồng dạng

Bài 1: Cho tam giác ABC, các trung tuyến BM và CN cắt nhau ở G. Gọi P là điểm dối xứng của điểm M qua G. Gọi Q là điểm đối xứng của điểm N qua G.Tứ giác MNPQ là hình gì? Vì sao ?Bài 2: Cho hình bình hành ABCD. Lấy hai điểm E, F theo thứ tự thuộc AB và CD sao cho AE = CF. Lấy hai điểm M, N theo thứ tự thuộc BC và AD sao cho CM = AN. Chứng minh rằng :a) MENF là hình bình hành.b) Các đường thẳng AC, BD, MN,...
Đọc tiếp

Bài 1: Cho tam giác ABC, các trung tuyến BM và CN cắt nhau ở G. Gọi P là điểm dối xứng của điểm M qua G. Gọi Q là điểm đối xứng của điểm N qua G.Tứ giác MNPQ là hình gì? Vì sao ?

Bài 2: Cho hình bình hành ABCD. Lấy hai điểm E, F theo thứ tự thuộc AB và CD sao cho AE = CF. Lấy hai điểm M, N theo thứ tự thuộc BC và AD sao cho CM = AN. Chứng minh rằng :

a) MENF là hình bình hành.

b) Các đường thẳng AC, BD, MN, EF đồng quy.

Bài 3: Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB và CD.

a) Tứ giác DEBF là hình gì? Vì sao?

b) C/m 3 đường thẳng AC, BD, EF đồng qui.

c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.

Bài 4: Cho (ABC. Gọi M,N lần lượt là trung điểm của BC,AC. Gọi H là điểm đối xứng của N qua M.Chứng minh tứ giác BNCH và ABHN là hình bình hành.

Bài 5: Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB và CD.

a) Tứ giác DEBF là hình gì? Vì sao?

b) C/m 3 đường thẳng AC, BD, EF đồng qui.

c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.

Bài 6 : Cho tứ  giác ABCD biết số đo của các góc A; B; C; D tỉ lệ thuận với5; 8; 13 và 10.

          a/ Tính số đo các góc của tứ giác ABCD

          b/ Kéo dài hai cạnh AB và DC cắt nhau ở E, kéo dài hai cạnh AD và BC cắt nhau ở F. Hai tia phân giác của các góc AED và góc AFB cắt nhau ở O. Phân giác của góc AFB cắt các cạnh CD và AB tại M và N. Chứng minh O là trung điểm  của đoạn MN.

Bài 7: Cho hình thang ABCD ( AB//CD).

          a/ Chứng minh rằng nếu hai tia phân giác của hai góc A và D cùng đi qua trung điểm F của cạnh bên BC thì cạnh bên AD bằng tổng hai đáy.

          b/ Chứng minh rằng nếu AD = AB + CD thì hai tia phân giác của hai góc A và D cắt nhau tại trung điểm của cạnh bên BC.

0
23 tháng 8 2017

Học sinh sử dụng tính chất các tam giác bằng nhau thì đồng dạng với nhau để chứng minh

26 tháng 3 2017

Ta có: E là trung điểm AB (gt)

F là trung điểm DC (gt)

AB = DC (ABCD là hình bình hành (gt))

\(\Rightarrow\)AE = FC

Xét \(\Delta ADE\)\(\Delta CBF\)có:

AD = BC (ABCD là hình bình hành (gt))

\(\widehat{A}=\widehat{C}\) (ABCD là hình bình hành (gt))

AE = FC (cmt)

\(\Rightarrow\)\(\Delta ADE = \Delta CBF (cgc)\)

\(\Rightarrow\)\(\Delta ADE \sim \Delta CBF\)