Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB=21/(3+4)x3=9 cm
AC=21-9=12cm
Tự kẻ hình bạn nhé =)))
Áp dụng định lí Pitago vào tam giác ABC , có
AB^2+AC^2=BC^2
=>thay số vào, tính được BC=15cm
Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:
AB^2=BHxBC
=>BH=81/15=5.4cm
=>CH=15-5.4=9.6cm
AH^2=BHxCH=5.4x9.6=51.84cm
a) EF là đường trung bình của tam giác ABH => EF//AB; EF=1/2AB (1)
Có G là trung điểm của DC => GC//AB(DC//AB); GC=1/2AB(DC=AB) (2)
Từ (1)$(2) => EF//GC; EF=GC => Tứ giác EFCG là hình bình hành.
b) Xét tam giác EBH và tam giác CBH có:BH là cạnh chung
EHB=CHB=90 (gt)
EH=EC(H là trung điểm của EC)
Vậy tam giác EBH=tam giac CBH (cgv-cgv)
=>BEH=BCH ; EBH=CBH
Lại có:BEH+EBH+BCH+CBH=180 =>BEH=EBH=BCH=CBH=180/4=45 (3)
Co BCE+ECG=BCG
Ma BCG=90(ABCD là hcn); BCE=45(cmt)
=> ECG=45
Xét tam giác EGC có:EGC+GEC+ECG=180
=> EGC=180-(GEC+ECG)
=180-(90+45)=45 (4)
Tu (3)$(4) => BEG=90
c)Tu CM
Bài 1:
a: \(AB=21\cdot\dfrac{3}{7}=9\left(cm\right)\)
AC=21-9=12(cm)
=>BC=15(cm)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
hay AH=7,2(cm)
Xét ΔAHB vuông tại H có \(AB^2=AH^2+BH^2\)
hay BH=5,4(cm)
=>CH=9,6(cm)
NA/BA = NC/BC
Vì Tam giác ABC vuông tại A, biết AB=3cm,BC=5cm => AC= 4(cm)
=> NC-NA=4 (cm)
=> NC/BC = NA/BA = ( NC-NA)/(BC-AB) = 2
=> NA= BA*2 =6 (cm)
a) Xét hình bình hành ABCD có I, K là trung điểm của AB và DC nên IK là đường trung bình. Vậy thì IK = BC = AD.
Xét tứ giác ADKI có 4 cạnh bằng nhau nên nó là hình thoi.
b) Chứng minh tương tự, ta có KCBI là hình thoi.
Vậy thì KA là phân giác góc \(\widehat{DKI}\) , KB là phân giác góc \(\widehat{IKC}\)
Vậy nên \(\widehat{AKB}=\widehat{AKI}+\widehat{IKB}=\frac{1}{2}\widehat{DKI}+\frac{1}{2}\widehat{IKC}=\frac{1}{2}.180^o=90^o\)
Vậy \(\widehat{AKB}=90^o\)
c) Do AB = DC = 2 BC = 2AD nên chu vi hình bình hành bằng 6 lần BC. Vậy BC = 30 : 6 = 5 (cm)
AB = 2 x 5 = 10 (cm)
Do IKCB là hình thoi nên BK là phân giác góc IBC. Vậy nên \(\widehat{IBK}=60^o\)
Suy ra IBK là tam giác đều hay KB = IK = BC = 5(cm)
Áp dụng định lý Pi-ta-go, ta có: \(AK=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)
Vậy diện tích tam giác AKB bằng: \(\frac{1}{2}.5.5\sqrt{3}=\frac{25}{2}\sqrt{3}\left(cm^2\right)\)
Dễ thấy diện tích hình bình hành gấp đôi diện tích tam giác AKB nên \(S_{ABCD}=25\sqrt{3}\left(cm^2\right)\)
bạn giải ra bài này chưa mình đang luyện thi casio nếu bạn biết hãy chỉ giúp mình nhá