K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2018

ĐAp án A

Phương trình hoành độ giao điểm là: x 4 − 3 x 2 − 2 − m = 0   1  

Gọi A x ; m ; B − x ; m là tọa độ giao điểm

Khi đó Δ O A B vuông tại O khi  O A ¯ . O B ¯ = − x 2 + m 2 = 0 ⇔ x = m

Khi đó m 4 − 3 m 2 − 2 − m = 0 ⇔ m = 2  (thỏa mãn).

15 tháng 3 2017

Đáp án là C

24 tháng 2 2019

Chọn D.

Phương pháp:

Giải phương trình hoành độ giao điểm, tìm giao điểm của hai đồ thị.

Dựa vào công thức trọng tâm, xác định m.

Cách giải:

Phương trình hoành độ giao điểm của d và (C) là

Để d cắt (C) tại hai điểm phân biệt A, B thì (*) có 2 nghiệm phân biệt khác 1

19 tháng 3 2019

Đáp án D

Phương trình hoành độ giao điểm của  C và  d

x x − 1 = m − x ⇔ x ≠ 1 x 2 − m x + m = 0    * .

Để  C cắt  d  tại hai điểm phân biệt ⇔ *  có hai nghiệm phân biệt khác 1 ⇔ m > 4 m < 0 .  

Khi đó, gọi điểm A x 1 ; m − x 1  và B x 2 ; m − x 2  là giao điểm của đồ thị C  và d .

⇒ O A = 2 x 1 2 − 2 m . x 1 + m 2 = 2 x 1 2 − m x 1 + m + m 2 − 2 m = m 2 − 2 m O B = 2 x 2 2 − 2 m . x 2 + m 2 = 2 x 2 2 − m x 2 + m + m 2 − 2 m = m 2 − 2 m  

Khoảng cách từ O đến AB bằng

h = d O ; d = m 2 ⇒ S Δ A B C = 1 2 . h . A B = m 2 2 . A B  

Ta có

S Δ A B C = a b c 4 R ⇔ R = a b c 4. S Δ A B C = O A . O B . A B 2. h . A B = O A . O B 2. h ⇔ 4 2 . m 2 = O A . O B ⇔ O A 2 . O B 2 = 16 m 2

Khi đó m 2 − 2 m 2 = 16 m 2 ⇔ m 2 − 2 m = 4 m m 2 − 2 m = − 4 m ⇔ m = 0 m = − 2 m = 6 .  

Kết hợp với điều kiện m > 4 m < 0 ,  ta được m = − 2 m = 6  là giá trị cần tìm

10 tháng 5 2019

Đáp án là A

22 tháng 10 2017

28 tháng 2 2017

2 tháng 6 2017

25 tháng 7 2017

10 tháng 8 2018

 

Đáp án A.

Phương trình hoành độ giao điểm của c m và d : x 3 - 3 x 2 + ( m + 1 ) x + 1 = x + 1  

⇔ x 3 - 3 x 2 + m x = 0 ⇔ x = 0 x 2 - 3 x + m = 0 *

Để  c m cắt d tại ba điểm phân biệt  P ( 0 ; 1 ) , M , N thì phương trình (*) phải có hai nghiệm phân biệt x 1 , x 2 khác 0  ⇔ 0 2 - 3 . 0 + m ≢ 0 ∆ = ( - 3 ) 2 - 4 m > 0 ⇔ m ≢ 0 m < 9 4

 

 Giả sử M ( x 1 ; x 1 + 1 ) vàvới N ( x 2 ; x 2 + 1 ) là nghiệm của phương trình (*).

Theo định lý Vi-ét ta có  x 1 + x 2 = 3 x 1 x 2 = m

Để tam giác OMN vuông tại O thì  O M   → . O N   → = 0 ⇔ x 1 x 2 + ( x 1 + 1 ) ( x 2 + 1 ) = 0

⇔ 2 x 1 x 2 + ( x 1 + x 2 ) + 1 = 0 ⇔ 2 m + 4 = 0 ⇔ m = - 2  (thỏa mãn)