K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) nghịch biến với mọi x<0 thì 

\(\sqrt{2n+5}-2>0\)

\(\Leftrightarrow\sqrt{2n+5}>2\)

\(\Leftrightarrow2n+5>4\)

\(\Leftrightarrow2n>-1\)

\(\Leftrightarrow n>-\dfrac{1}{2}\)

Kết hợp ĐKXĐ, ta được: \(n>-\dfrac{1}{2}\)

Vậy: Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) nghịch biến với mọi x<0 thì \(n>-\dfrac{1}{2}\)

b) Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) đồng biến với mọi x<0 thì \(\sqrt{2n+5}-2< 0\)

\(\Leftrightarrow\sqrt{2n+5}< 2\)

\(\Leftrightarrow2n+5< 4\)

\(\Leftrightarrow2n< -1\)

\(\Leftrightarrow n< -\dfrac{1}{2}\)

Kết hợp ĐKXĐ, ta được: \(-\dfrac{5}{2}\le n< \dfrac{1}{2}\)

Vậy: Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) đồng biến với mọi x<0 thì \(-\dfrac{5}{2}\le n< \dfrac{1}{2}\)

24 tháng 2 2021

a,Nghịch biến khi `x<0`

`<=>\sqrt{2n+5}-2>0(x>=-5/2)`

`<=>\sqrt{2n+5}>2`

`<=>2n+5>4`

`<=>2n> -1`

`<=>n> -1/2`

Kết hợp ĐKXĐ:

`=>n>1/2`

b,Đồng biến với mọi `x<0`

`<=>\sqrt{2n+5}-2<0`

`<=>\sqrt{2n+5}<2`

`<=>2n+5<4`

`<=>2n< -1`

`<=>n< -1/2`

Kết hợp ĐKXĐ:

`=>-5/2<x< -1/2`

Câu 1: 

a) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(3m+5< 0\)

\(\Leftrightarrow3m< -5\)

hay \(m< -\dfrac{5}{3}\)

Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(m< -\dfrac{5}{3}\)

b) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì

3m+5>0

\(\Leftrightarrow3m>-5\)

hay \(m>-\dfrac{5}{3}\)

Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì \(m>-\dfrac{5}{3}\)

NV
23 tháng 2 2021

2.

Để hàm nghịch biến với x>0 \(\Leftrightarrow\sqrt{3k+4}-3< 0\)

\(\Leftrightarrow\sqrt{3k+4}< 3\Leftrightarrow3k+4< 9\)

\(\Rightarrow-\dfrac{4}{3}\le k< \dfrac{5}{3}\)

Để hàm đồng biến khi x>0

\(\Leftrightarrow\sqrt{3k+4}-3>0\Leftrightarrow\sqrt{3k+4}>3\)

\(\Leftrightarrow3k+4>9\Rightarrow k>\dfrac{5}{3}\)

28 tháng 2 2021

a,nghịch biến x<0

`<=>4m+2<0`

`<=>4m< -2`

`<=>m< -1/2`

`b,(4m+2)x^2<=0`

Mà `x^2>=0`

`<=>4m+2<0`

`<=>4m<-2`

`<=>m<-1/2`

a) Để hàm số nghịch biến với mọi x<0 thì 4m+2>0

\(\Leftrightarrow4m>-2\)

hay \(m>-\dfrac{1}{2}\)

Vậy: Để hàm số nghịch biến với mọi x<0 thì \(m>-\dfrac{1}{2}\)

b) Để hàm số đạt giá trị lớn nhất là 0 thì 4m+2<0

hay \(m< -\dfrac{1}{2}\)

28 tháng 11 2021

\(a,\Leftrightarrow\sqrt{\dfrac{m-2}{m+3}}>0\)

Mà \(\sqrt{\dfrac{m-2}{m+3}}\ge0\Leftrightarrow\sqrt{\dfrac{m-2}{m+3}}\ne0\Leftrightarrow m\ne2;m\ne-3\)

\(b,y=m^2x-5mx-6m=x\left(m^2-5m\right)-6m\)

Đồng biến \(\Leftrightarrow m^2-5m>0\Leftrightarrow m\left(m-5\right)>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>5\end{matrix}\right.\)

\(c,y=x\left(\dfrac{m+5}{m-2}-1\right)+\sqrt{m-2}=\dfrac{7}{m-2}x+\sqrt{m-2}\)

Đồng biến \(\Leftrightarrow\dfrac{7}{m-2}>0\Leftrightarrow m-2>0\Leftrightarrow m>2\)

2: m^2-m+1

=m^2-m+1/4+3/4

=(m-1/2)^2+3/4>=3/4>0 với mọi m

=>y=(m^2-m+1)x+m luôn là hàm số bậc nhất và luôn đồng biến trên R

10 tháng 12 2020

a) Hàm số đồng biến nếu \(\dfrac{k^2+2}{k-3}>0\) \(\Leftrightarrow k>3\)

b) Hàm số nghịch biến nếu \(\dfrac{k+\sqrt{2}}{k^2+\sqrt{3}}< 0\Leftrightarrow k< -\sqrt{2}\)

25 tháng 12 2021

Vì hai đồ thị cắt nhau tại một điểm trên trục tung nên n=-4

=>m=-2