K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

Vì Giải sách bài tập Toán 11 | Giải sbt Toán 11 

nên với dãy số ( x n ) bất kì, x n ∈ K \   x 0 và x n   →   x 0  ta luôn có 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ định nghĩa suy ra f ( x n ) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Nếu số dương này là 1 thì f ( x n   )   >   1 kể từ một số hạng nàođó trởđi.

Nói cách khác, luôn tồn tạiít nhất một số x k ∈ K \   x 0 sao cho f ( x k )   >   1 .

Tham khảo:

undefined

Tham khảo:

undefined

26 tháng 10 2019

Đặt Giải sách bài tập Toán 11 | Giải sbt Toán 11

Suy ra g(x) xác định trên ( a ; b )   \   x 0 và Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mặt khác, f ( x )   =   f ( x 0 )   +   L ( x   −   x 0 )   +   ( x   −   x 0 ) g ( x ) nên

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy hàm số y = f(x) liên tục tại

23 tháng 4 2018

Giả sử ( x n ) là dãy số bất kì thoả mãn n < a và x n   →   − ∞

Vì Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vì Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó, Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ định nghĩa suy ra Giải sách bài tập Toán 11 | Giải sbt Toán 11

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Theo lí thuyết ta chọn đáp án D.

QT
Quoc Tran Anh Le
Giáo viên
14 tháng 8 2023

Thịnh ơi, có gì mấy câu trả lời SGK em giúp anh trình bày đầy đủ và làm đẹp nhé, có Latex đầy đủ á. Mình làm hướng đến cộng đồng, em giúp hoc24 nhé!

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a)     Ta có: \(\Delta x = x - {x_0},\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\)

\(\begin{array}{l}\mathop {\lim }\limits_{\Delta x \to 0} \frac{{h({x_0} + \Delta x) - h({x_0})}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{h\left( x \right) - h\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f(x) + g(x) - f({x_0}) - g\left( {{x_0}} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{g(x) - f\left( {{x_0}} \right)}}{{x - {x_0}}} + \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f(x) - g\left( {{x_0}} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{g\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)}}{{\Delta x}} + \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {{x_0} + \Delta x} \right) - g\left( {{x_0}} \right)}}{{\Delta x}}\end{array}\)

b)    \(h'({x_0})\) = \(f'({x_0}) + g'({x_0})\)