\(K,x_0\in K\) và hàm số \(y=f\left(x\right)\) xác...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tham khảo:

undefined

4 tháng 4 2017

Ý kiến đúng

Giả sử ngược lại y = f(x) + g(x) liên tục tại x0. Đặt h(x) = f(x) + g(x). Ta có g(x) = h(x) – f(x).

Vì y = h(x) và y = f(x) liên tục tại x0 nên hiệu của chúng là hàm số y = g(x) phải liên tục tại x0. Điều này trái với giả thiết là y = g(x) không liên tục tại x0.

4 tháng 4 2017

Quan sát đồ thị ta thấy x → -∞ thì f(x) → 0; khi x → 3- thì f(x) → -∞;

khi x → -3+ thì f(x) x → +∞.

b) f(x) = = = 0.

f(x) = = = -∞ vì = > 0 và = -∞.

f(x) = = . = +∞
= = > 0 và = +∞.



Giải sách bài tập Toán 11 | Giải sbt Toán 11 thì f(x) thỏa mãn được tất cả các điều kiện đã nêu

NV
10 tháng 4 2020

Bạn viết lại đề được ko? Ko hiểu \(\frac{x'+x}{x}\) với \(x\ne0\) là gì

Các câu dưới cũng có kí hiệu này, chắc bạn viết nhầm sang kí hiệu nào đó, nó cũng ko phải kí hiệu đạo hàm

11 tháng 4 2020

a) f(x) liên tục tại x0 = -2

\(\lim\limits_{x\rightarrow-2}f\left(x\right)=f\left(-2\right)=25\)

b) Có: \(\lim\limits_{x\rightarrow\frac{1}{2}}f\left(x\right)=\lim\limits_{x\rightarrow\frac{1}{2}}\frac{\left(2x-1\right)\left(2x+1\right)}{2x-1}=\lim\limits_{x\rightarrow\frac{1}{2}}\left(2x+1\right)=2\)

\(f\left(\frac{1}{2}\right)=3\)

=> \(\lim\limits_{x\rightarrow\frac{1}{2}}f\left(x\right)\ne f\left(\frac{1}{2}\right)\)

=> f(x) gián đoạn tại x0 = 1/2

c) \(\lim\limits_{x\rightarrow2-}f\left(x\right)=\lim\limits_{x\rightarrow2-}=\lim\limits_{x\rightarrow2-}\left(2x^2+x-1\right)=9\)

\(f\left(2\right)=3.2-5=1\)

\(\lim\limits_{x\rightarrow2-}f\left(x\right)\ne f\left(2\right)\)

nên f(x) gián đoạn tại x0 = 2

4 tháng 4 2017

a) Ta có ham-so-lien-tuc = 22 +2.2 +4 = 12.

ham-so-lien-tucnên hàm số y = g(x) gián đoạn tại x0 = 2.

b) Để hàm số y = f(x) liên tục tại x0 = 2 thì ta cần thay số 5 bởi số 12