K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2021

1/ \(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\left(x+1\right)=f\left(2\right)=3\)

\(\lim\limits_{x\rightarrow2^-}f\left(x\right)=\lim\limits_{x\rightarrow2^-}\dfrac{\left(x-2\right)\left(x-1\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\lim\limits_{x\rightarrow2^-}\dfrac{x-1}{x^2+2x+4}=\dfrac{1}{12}\)

\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=f\left(2\right)\ne\lim\limits_{x\rightarrow2^-}f\left(x\right)\)

=> ham so gian doan tai x=2

2/ \(\lim\limits_{x\rightarrow2^-}f\left(x\right)=f\left(2\right)=2a-1\)

\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\dfrac{3x-2-4}{\left(x-2\right)\left(\sqrt{3x-2}+2\right)}=\lim\limits_{x\rightarrow2^+}\dfrac{3}{\sqrt{3x-2}+2}=\dfrac{3}{4}\)

De ham so lien tuc tai x=2

\(\Leftrightarrow\lim\limits_{x\rightarrow2^-}f\left(x\right)=f\left(2\right)=\lim\limits_{x\rightarrow2^+}f\left(x\right)\Leftrightarrow2a-1=\dfrac{3}{4}\Leftrightarrow a=\dfrac{7}{8}\)

NV
20 tháng 5 2019

\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\frac{\sqrt[3]{5x+3}-2+2-\sqrt{2x+2}}{x-1}=\lim\limits_{x\rightarrow1^-}\frac{\frac{5\left(x-1\right)}{\sqrt[3]{\left(5x+3\right)^2}+2\sqrt[3]{5x+3}+4}-\frac{2\left(x-1\right)}{2+\sqrt{2x+2}}}{x-1}\)

\(=\lim\limits_{x\rightarrow1^-}\left(\frac{5}{\sqrt[3]{\left(5x+3\right)^2}+2\sqrt[3]{5x+3}+4}-\frac{2}{2+\sqrt{2x+2}}\right)=-\frac{1}{12}\)

\(\lim\limits_{x\rightarrow1^+}=\lim\limits_{x\rightarrow1^+}m.sin\left(\frac{\pi x}{2}+2019\right)=\)

Đến đây lại thêm vấn đề nữa, \(sin\left(\frac{\pi x}{2}+2019\right)\) hay \(sin\left(\frac{\pi x}{2}+2019\pi\right)\) bạn?

NV
19 tháng 5 2019

Bạn ghi đề sai thì phải, nhìn hàm khi \(x< 1\) thì \(\lim\limits_{x\rightarrow1^-}f\left(x\right)\) không tồn tại (ko phải dạng vô định \(\frac{0}{0}\), khi thay x=1 vào tử số ra khác 0)

F x tại 0 =0

Lim x tới 0 =1/2

20 tháng 4 2022

Võ Ngọc Tú Uyênloading...  

17 tháng 5 2021

1. \(\left|\frac{2x^2-x}{3x-4}\right|\ge1\) Điều kiện: \(x\ne\frac{4}{3}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{2x^2-x}{3x-4}\ge1\\\frac{2x^2-x}{3x-4}\le-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{x^2-2x+2}{3x-4}\ge0\\\frac{x^2+x-2}{3x-4}\le0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x>\frac{4}{3}\\x\in(-\infty;-2]U[1;\frac{4}{3})\end{cases}}\Leftrightarrow x\in(-\infty;-2]U[1;+\infty)\backslash\left\{\frac{4}{3}\right\}\)

2.\(\hept{\begin{cases}x^2\le-2x+3\left(1\right)\\\left(m+1\right)x\ge2m-1\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow x^2+2x-3\le0\Leftrightarrow-3\le x\le1\)

+) Nếu \(m=-1\) thì (2) vô nghiệm, suy ra \(m\ne-1\)

+) Nếu \(m>-1\) thì \(\left(2\right)\Leftrightarrow x\ge\frac{2m-1}{m+1}\)

Hệ BPT có nghiệm duy nhất \(\Leftrightarrow\frac{2m-1}{m+1}=1\Leftrightarrow m=2>-1\)

+) Nếu \(m< -1\)thì \(\left(2\right)\Leftrightarrow x\le\frac{2m-1}{m+1}\)

Hệ BPT có nghiệm duy nhất \(\Leftrightarrow\frac{2m-1}{m+1}=-3\Leftrightarrow m=-\frac{2}{5}< -1\)

Vậy \(m=\left\{\frac{-2}{5};2\right\}\)

19 tháng 5 2021

1. |2x2−x3x−4 |≥1 Điều kiện: x≠43 

⇔[

2x2−x3x−4 ≥1
2x2−x3x−4 ≤−1

⇔[

x2−2x+23x−4 ≥0
x2+x−23x−4 ≤0

⇔[

x>43 
x∈(−∞;−2]U[1;43 )

⇔x∈(−∞;−2]U[1;+∞)\{43 }

2.{

x2≤−2x+3(1)
(m+1)x≥2m−1(2)

(1)⇔x2+2x−3≤0⇔−3≤x≤1

NV
18 tháng 4 2021

1.

\(y'=12x+\dfrac{4}{x^2}\)

2.

\(y'=\dfrac{3}{\left(-x+1\right)^2}\)

3.

\(y'=\dfrac{2x-3}{2\sqrt{x^2-3x+4}}\)

4.

\(y=\dfrac{x^3+3x^2-x-3}{x-4}\)

\(y'=\dfrac{\left(3x^2+6x-1\right)\left(x-4\right)-\left(x^3+3x^2-x-3\right)}{\left(x-4\right)^2}=\dfrac{2x^3-9x^2-24x+7}{\left(x-4\right)^2}\)

5.

\(y'=-\dfrac{4x-3}{\left(2x^2-3x+5\right)^2}\)

6.

\(y'=\sqrt{x^2-1}+\dfrac{x\left(x+1\right)}{\sqrt{x^2-1}}\)

28 tháng 8 2017

câu này có vẻ bựa đấy!banh

chắc trên trang web này không ai đủ trình giải bài này đâu

đáp án là số 0 nhé còn cách giải thì mình để lại cho mấy bạn cao thủ ở sau hjihileuleu

2 tháng 9 2017

yêu cầu bạn nghiêm túc

10 tháng 12 2023

a) Ta có \(\lim\limits_{x\rightarrow-\infty}\dfrac{4x+1}{-x+1}=\lim\limits_{x\rightarrow-\infty}\left(\dfrac{-4+\dfrac{1}{x}}{1+\dfrac{1}{x}}\right)=-4\)

b) Ta có \(\lim\limits_{x\rightarrow2}f\left(x\right)=\lim\limits_{x\rightarrow2}\dfrac{x^2-x-2}{x-2}=\lim\limits_{x\rightarrow2}\left(\dfrac{\left(x+1\right)\left(x-2\right)}{x-2}\right)\)

\(=\lim\limits_{x\rightarrow2}\left(x+1\right)=2+1=3\)

 Để hàm số đã cho liên tục tại \(x=2\) thì \(\lim\limits_{x\rightarrow2}f\left(x\right)=f\left(2\right)=m\) hay \(m=3\).

8 tháng 12 2021

Áp dụng BĐT \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\):

\(y^2=\left(\sqrt{sinx}+\sqrt{1-sinx}\right)^2\le sinx+1-sinx=1\)

\(\Rightarrow-1\le y\le1\)

\(\Rightarrow M^4-m^4=0\)

27 tháng 4 2022

74630:243

27 tháng 4 2022

o

19 tháng 11 2023

Khi \(x\ne1\) thì \(f\left(x\right)=\dfrac{3x^2-3x}{x-1}=\dfrac{3x\left(x-1\right)}{x-1}=3x\) hoàn toàn xác định

nên f(x) liên tục trên các khoảng \(\left(-\infty;1\right);\left(1;+\infty\right)\)(1)

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{3x^2-3x}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{3x\left(x-1\right)}{x-1}=\lim\limits_{x\rightarrow1}3x=3\cdot1=3\)

\(f\left(1\right)=m\cdot1+1=m+1\)

Để hàm số liên tục trên R thì hàm số cần liên tục trên các khoảng sau: \(\left(-\infty;1\right);\left(1;+\infty\right)\) và liên tục luôn tại x=1(2)

Từ (1),(2) suy ra để hàm số liên tục trên R thì hàm số cần liên tục tại x=1

=>\(f\left(1\right)=\lim\limits_{x\rightarrow1}f\left(x\right)\)

=>m+1=3

=>m=2