K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2017

câu này có vẻ bựa đấy!banh

chắc trên trang web này không ai đủ trình giải bài này đâu

đáp án là số 0 nhé còn cách giải thì mình để lại cho mấy bạn cao thủ ở sau hjihileuleu

2 tháng 9 2017

yêu cầu bạn nghiêm túc

Để \(U_n\) có chữ số tận cùng là 2 thì \(5n+2\) có chữ số tận cùng là 2

=>5n có chữ số tận cùng là 0

=>n chẵn

=>\(U_n=5n⋮10\)

Số lượng số hạng \(U_n\) chia hết cho 10 khi \(960< U_n< 6900\) là:

\(\dfrac{\left(6900-960\right)}{10}+1-2=595-2=593\left(số\right)\)

Để \(U_n\) có chữ số tận cùng là 9 thì \(4^n+3\) có chữ số tận cùng là 9

=>\(4^n\) có chữ số tận cùng là 6

=>\(n=4k+2\left(k\in N\right)\)

Để \(U_n< 10000\) thì \(4^n+3< 10000\)

=>\(4^n< 9997\)

=>\(n< log_49997\simeq6,6\)

mà n nguyên dương và n chia 4 dư 2

nên \(n\in\left\{2;6\right\}\)

=>Có 2 số hạng trong dãy \(\left(U_n\right)\) thỏa mãn

\(U_n\) có chữ số tận cùng là 7

=>\(5n+2\) có chữ số tận cùng là 7

=>5n có chữ số tận cùng là 5

=>n lẻ

Số lượng số lẻ trong dãy số từ 10;11;...;2023 là:

\(\dfrac{\left(2023-11\right)}{2}+1=1007\left(số\right)\)

=>Trong dãy này có 1007 số hạng có tận cùng là 7

9 tháng 1 2018

Chọn A

Ta có tất cả các số tự nhiên có 7 chữ số bắt đầu từ 1000000 đến 9999999 gồm 9000000 số.

Do đó 

Mặt khác, ta thấy cứ 70 số tự nhiên liên tiếp thì có 10 số chia hết cho 7, trong đó có 1 số có chữ số hàng đơn vị là chữ số 3.

 nên ta chia 9000000 số thành 128571 bộ 70 số liên tiếp và còn lại 30 số cuối, trong đó:

128571 bộ 70 số tự  nhiên liên tiếp có 128571 số thỏa mãn yêu cầu

30 số cuối có 3 số tận cùng bằng 3 được xét trong bảng sau

9999973

9999983

9999993

Chia cho 7 dư 4

Chia hết cho 7

Chia cho 7 dư 4

 

 

 

 

Vậy tất cả có 128572 số chia hết cho 7 và chữ số hàng đơn vị là chữ số 3.

Gọi A là biến cố ‘Chọn được một số chia hết cho 7 và chữ số hàng đơn vị là chữ số 3’ thì n(A) = 128572

Suy ra 

8 tháng 11 2019

Chọn A

Ta có tất cả các số tự nhiên có 7 chữ số bắt đầu từ 1000000 đến 9999999 gồm 9000000 số.

Do đó

Mặt khác, ta thấy cứ 70 số tự nhiên liên tiếp thì có 10 số chia hết cho 7, trong đó có 1 số có chữ số hàng đơn vị là chữ số 3.

Mà 90000 = 70x128571 + 30, nên ta chia 9000000 số thành 128571 bộ 70 số liên tiếp và còn lại 30 số cuối, trong đó:

128571 bộ 70 số tự  nhiên liên tiếp có 128571 số thỏa mãn yêu cầu

30 số cuối có 3 số tận cùng bằng 3 được xét trong bảng sau

 

9999973

9999983

9999993

Chia cho 7 dư 4

Chia hết cho 7

Chia cho 7 dư 4

Vậy tất cả có 128572 số chia hết cho 7 và chữ số hàng đơn vị là chữ số 3.

Gọi  là biến cố ‘Chọn được một số chia hết cho 7 và chữ số hàng đơn vị là chữ số 3’ thì n(A) = 128572

Suy ra 

12 tháng 12 2017

Chọn A

Ta có tất cả các số tự nhiên có 7 chữ số bắt đầu từ 1000000 đến 9999999 gồm 9000000 số.

Do đó 

Mặt khác, ta thấy cứ 70 số tự nhiên liên tiếp thì có 10 số chia hết cho 7, trong đó có 1 số có chữ số hàng đơn vị là chữ số 3.

 nên ta chia 9000000 số thành 128571 bộ 70 số liên tiếp và còn lại 30 số cuối, trong đó:

128571 bộ 70 số tự  nhiên liên tiếp có 128571 số thỏa mãn yêu cầu

30 số cuối có 3 số tận cùng bằng 3 được xét trong bảng sau

9999973

9999983

9999993

Chia cho 7 dư 4

Chia hết cho 7

Chia cho 7 dư 4

 

 

 

 

Vậy tất cả có 128572 số chia hết cho 7 và chữ số hàng đơn vị là chữ số 3.

Gọi A là biến cố ‘Chọn được một số chia hết cho 7 và chữ số hàng đơn vị là chữ số 3’ thì n(A) = 128572

Suy ra 

30 tháng 10 2018

Đáp án D

Số tập con của A có 8 phần tử C n 8

và số tập của A có 4 phần tử là  C n 4

⇒ 26 = C n 8 C n 4 = ( n - 7 ) ( n - 5 ) ( n - 4 ) 1680

⇔ n = 20

Số tập con gồm k phần tử là  C 20 k

Khi xảy ra  C 20 k > C 20 k + 1

Vậy với k = 10 thì C 20 k đạt giá trị nhỏ nhất.

Để \(u_n\) có tận cùng là 7 thì \(6^n+1\) có tận cùng là 7

=>\(6^n\) có chữ số tận cùng là 6

=>\(n\in Z^+\)

\(69000< U_n< 960000\)

=>\(69000< 6^n+1< 960000\)

=>\(68999< 6^n< 959999\)

=>\(log_668999< n< log_6959999\)

=>\(6,22< n< 7,68\)

mà n là số tự nhiên

nên n=7

=>Có 1 số hạng duy nhất thỏa mãn

- Dãy số: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 (1)- Dãy số \(\left( {{u_n}} \right)\) được xác định bởi: Với mỗi số tự nhiên \(n \ge 1,{u_n}\) là số thập phân hữu hạn có phần số nguyên là 1 và phần thập phân là n chữ số thập phân đầu tiên đứng sau “,” của số \(\sqrt 2 \). Cụ thể là:\({u_1} = 1,4;{u_2} = 1,41;{u_3} = 1,414;{u_4} = 1,4142;{u_5} = 1,41421;...\left( 2 \right)\)- Dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {\left( { - 2} \right)^n}\)...
Đọc tiếp

- Dãy số: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 (1)
- Dãy số \(\left( {{u_n}} \right)\) được xác định bởi: Với mỗi số tự nhiên \(n \ge 1,{u_n}\) là số thập phân hữu hạn có phần số nguyên là 1 và phần thập phân là n chữ số thập phân đầu tiên đứng sau “,” của số \(\sqrt 2 \). Cụ thể là:
\({u_1} = 1,4;{u_2} = 1,41;{u_3} = 1,414;{u_4} = 1,4142;{u_5} = 1,41421;...\left( 2 \right)\)

- Dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {\left( { - 2} \right)^n}\) (3)
- Dãy số \(\left( {{u_n}} \right)\) được xác định bởi: \({u_1} = 1\) và \({u_n} = {u_{n - 1}} + 2\) với mọi \(n \ge 2\,\,\left( 4 \right)\)
a)    Hãy nêu cách xác định mỗi số hạng của lần lượt các dãy số (1), (2), (3), (4)

b)    Từ đó hãy cho biết dãy số có thể cho bằng những cách nào.

1
HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Cách xác định mỗi số hạng của dãy số:

(1) : Liệt kê

(2) : Nêu cách xác định của mỗi số hạng trong dãy số

(3) : Nêu số hạng tổng quát

(4) : Truy hồi

b)    Dãy số có thể cho bằng những cách sau:

-        Liệt kê số hạng của dãy số

-        Diễn đạt bằng lời cách xác định mỗi số hạng của dãy số

-        Cho công thức của số hạng tổng quát

-        Truy hồi