K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

M B A H
kẻ MH vuông góc với AB.
Th1: H nằm trong đoạn AB (hình vẽ)
Đặt \(AB=c\)
áp dụng định lý pitago ta có: \(MA^2=MH^2+HA^2,MB^2=MH^2+HB^2\)
SUY RA: \(MA^2-MB^2=HA^2-HB^2=\left(HA-HB\right)\left(HA+HB\right)=a\)
Do H nằm trên đoạn AB nên HA+HB=a từ đó suy ra: \(HA-HB=\frac{a}{HA+HB}=\frac{a}{c}\)
Mà HA+HB=c suy ra: \(HA=\left(\frac{a}{c}+c\right):2=\frac{a+c^2}{2c}\)(không đổi).
Suy ra M nằm trên đường thẳng qua H ( H thuộc đoạn AB, \(HA=\frac{a+c^2}{2c}\)) vuông góc với AB.
TH2: H nằm ngoài đoạn AB ta có HA-HB=AB=c. Lập luận tương tự ta cũng có kết quả như TH1.

1 tháng 8 2016

M là trung điểm AB,  a=0

1: ΔONP cân tại O

mà OK là trung tuyến

nên OK vuông góc NP

góc OKM=góc OAM=góc OBM=90 độ

=>O,K,A,M,B cùng thuộc 1 đường tròn

2: góc AKM=góc AOM

góc BKM=góc BOM

góc AOM=góc BOM

=>góc AKM=góc BKM

=>KM là phân giác của góc AKB

a: ΔOCD cân tại O có OK là đường trung tuyến

nên OK vuông góc CD

góc OKM=góc OAM=góc OBM=90 độ

=>O,K,M,A,B cùng thuộc đường tròn đường kính OM

b: Xét ΔMAC và ΔMDA có

góc MAC=góc MDA=1/2sđ cung AC

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA
=>MA/MD=MC/MA

=>MA^2=MD*MC

=>MD*MC ko phụ thuộc vào cát tuyến MCD

 

30 tháng 1 2021

M A B C

Nối MA, MB tạo thành tam giác MAB

C là trung điểm của AB

áp dụng công thức đường trung tuyến

\(MC^2=\frac{2\left(MA^2+MB^2\right)-AB^2}{4}\) (*)

Lâu rồi tôi không nhớ là có được áp dụng công thức này hay không nếu phải chứng minh ta chứng minh như sau:

Áp dụng định lý hàm cos

Xét tg MAC có

\(MC^2=MA^2+AC^2-2.MA.AC.\cos\widehat{A}\)  (1)

Xét tg MAB có

\(MB^2=MA^2+AB^2-2.MA.AB.\cos\widehat{A}\Rightarrow\cos\widehat{A}=\frac{MA^2+AB^2-MB^2}{2.MA.AB}\) Thay vào (1) ta có

\(MC^2=MA^2+AC^2-2.MA.AC.\frac{MA^2+AB^2-MB^2}{2.MA.AB}\)

\(MC^2=MA^2+\frac{AB^2}{4}-2.MA.\frac{AB}{2}.\frac{MA^2+AB^2-MB^2}{2.MA.AB}\)

\(MC^2=MA^2+\frac{AB^2}{4}-\frac{MA^2+AB^2-MB^2}{2}=\frac{2\left(MA^2+MB^2\right)-AB^2}{4}\left(dpcm\right)\)

Từ (*)\(\Rightarrow MC^2=\frac{2.\frac{3a^2}{4}-a^2}{4}=\frac{a^2}{8}\Rightarrow MC=\frac{a}{2\sqrt{2}}\)

AB cố định => C cố định, M cách C cố định 1 khoảng không đổi \(=\frac{a}{2\sqrt{2}}\) nên M nằm trên đường tròn tâm C có bán kính\(=\frac{a}{2\sqrt{2}}\)