Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ \(MO\perp AD\text{ }\left(O\in AD\right)\)
Ta có: OM là đường vuông góc; MA, MB, MC, MD là các đường xiên (lớn nhất là \(MA\) hay \(MD\))
Ta luôn có: \(OM\le MB\le MA\) hoặc \(OM\le MB\le MD\)
\(OM\le MC\le MA\) hoặc \(OM\le MC\le MD\)
Có 3 khả năng: \(MB+MC\le MA+MD\) (Dấu bằng xảy ra khi \(B\equiv A,\text{ }C\equiv D\text{}\text{}\text{}\) hoặc \(B\equiv D,\text{ }C\equiv A\))
\(MB+MC\le2MA\) (Dấu bằng xảy ra khi \(A\equiv B\equiv C\))
\(MB+MC\le2MD\)(Dấu bằng xảy ra khi \(D\equiv B\equiv C\))
Tuỳ thuộc vào vị trí của M mà chứng minh. Bất đẳng thức trên có thể không đúng với mọi vị trí của M.
Gọi I là trung điểm của BC
Trên tia đối của IM lấy điểm N sao cho IM = IN
Dễ chứng minh \(\Delta\)IAM = \(\Delta\)IDN (c.g.c) nên MA = MD (hai cạnh tương ứng) (1)
C nằm trong \(\Delta\)MDN nên MC + CN < MD + ND (2)
Thật dễ dàng khi c/m: \(\Delta\)IBM = \(\Delta\)ICN (c.g.c) => MB = NC (hai cạnh tương ứng) (3)
Từ (1), (2) và (3) suy ra MA + MD > MB + MC (đpcm)
Nguyễn Ribi Nkok NPhTThảo Phương
hien Tu Borumạm Hoàng GianggoTrần QNguyễnTrThảo Phương
ương Hồng Hạnh Thanh HằngQuThảo Phương
anThảo Phương
g Ho Siuốc Anh TriêtLộckNam