K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LH
20 tháng 3 2020
Kẻ \(MO\perp AD\text{ }\left(O\in AD\right)\)
Ta có: OM là đường vuông góc; MA, MB, MC, MD là các đường xiên (lớn nhất là \(MA\) hay \(MD\))
Ta luôn có: \(OM\le MB\le MA\) hoặc \(OM\le MB\le MD\)
\(OM\le MC\le MA\) hoặc \(OM\le MC\le MD\)
Có 3 khả năng: \(MB+MC\le MA+MD\) (Dấu bằng xảy ra khi \(B\equiv A,\text{ }C\equiv D\text{}\text{}\text{}\) hoặc \(B\equiv D,\text{ }C\equiv A\))
\(MB+MC\le2MA\) (Dấu bằng xảy ra khi \(A\equiv B\equiv C\))
\(MB+MC\le2MD\)(Dấu bằng xảy ra khi \(D\equiv B\equiv C\))
Tuỳ thuộc vào vị trí của M mà chứng minh. Bất đẳng thức trên có thể không đúng với mọi vị trí của M.
Nguyễn Ribi Nkok NPhTThảo Phương
hien Tu Borumạm Hoàng GianggoTrần QNguyễnTrThảo Phương
ương Hồng Hạnh Thanh HằngQuThảo Phương
anThảo Phương
g Ho Siuốc Anh TriêtLộckNam
@Ngô Tấn Đạt