K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

A D B C M M

Đề có thể sai nhé bạn

26 tháng 11 2017

Nguyễn Ribi Nkok NPhTThảo Phương

hien Tu Borumạm Hoàng GianggoTrần QNguyễnTrThảo Phương

ương Hồng Hạnh Thanh HằngQuThảo Phương

anThảo Phương

g Ho Siuốc Anh TriêtLộckNam

26 tháng 11 2017

@Ngô Tấn Đạt

13 tháng 3 2020

Gọi I là trung điểm của BC

Trên tia đối của IM lấy điểm N sao cho IM = IN

Dễ chứng minh \(\Delta\)IAM = \(\Delta\)IDN (c.g.c) nên MA = MD (hai cạnh tương ứng) (1)

C nằm trong \(\Delta\)MDN nên MC + CN < MD + ND (2)

Thật dễ dàng khi c/m: \(\Delta\)IBM = \(\Delta\)ICN (c.g.c) => MB = NC (hai cạnh tương ứng)  (3)

Từ (1), (2) và (3) suy ra MA + MD > MB + MC (đpcm)

20 tháng 3 2020

A D M B C O

Kẻ \(MO\perp AD\text{ }\left(O\in AD\right)\)

Ta có: OM là đường vuông góc; MA, MB, MC, MD là các đường xiên (lớn nhất là \(MA\) hay \(MD\))

Ta luôn có: \(OM\le MB\le MA\) hoặc \(OM\le MB\le MD\)

 \(OM\le MC\le MA\) hoặc \(OM\le MC\le MD\)

Có 3 khả năng: \(MB+MC\le MA+MD\) (Dấu bằng xảy ra khi \(B\equiv A,\text{ }C\equiv D\text{​​}\text{​​}\text{​​}\) hoặc \(B\equiv D,\text{ }C\equiv A\))

\(MB+MC\le2MA\) (Dấu bằng xảy ra khi \(A\equiv B\equiv C\))

\(MB+MC\le2MD\)(Dấu bằng xảy ra khi \(D\equiv B\equiv C\))

Tuỳ thuộc vào vị trí của M mà chứng minh. Bất đẳng thức trên có thể không đúng với mọi vị trí của M.

27 tháng 4 2017

bài này lớp 7 sao

27 tháng 4 2017

đúng r bn