K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2023

Đo góc ABC. Vẽ đường thẳng a đi qua A sao cho góc tạo bởi a và đường thẳng AB bằng góc ABC.

Ta được đường thẳng a đi qua A và song song với BC

Đo góc ACB. Vẽ đường thẳng b đi qua B sao cho góc tạo bởi b và đường thẳng BC bằng góc ACB.

Ta được đường thẳng b đi qua B và song song với AC

b) Có thể vẽ được chỉ 1 đường thẳng a, 1 đường thẳng b thoả mãn yêu cầu. Vì qua 1 điểm nằm ngoài  một đường thẳng, chỉ có 1 đường thẳng song song với nó

9 tháng 1 2016

anh đã có bài giải của câu này chưa _ Đăng giúp em với

 

8 tháng 11 2016

Bn gửi mk bài giải câu 2 dc ko

18 tháng 9 2023

Theo Tiên đề Euclid:

+) Qua điểm A nằm ngoài đường thẳng BC, chỉ có một đường thẳng song song với đường thẳng BC. Đường thẳng đó là a

+) Qua điểm B nằm ngoài đường thẳng AC, chỉ có một đường thẳng song song với đường thẳng BC. Đường thẳng đó là b

Như vậy, có thể vẽ được 1 đường thẳng a, 1 đường thẳng b.

18 tháng 9 2023

Bạn toàn lấy hình ảnh và lời giải trên Lời giải hay .

Bạn copy không ghi tham khảo :

 https://tailieumoi.vn/bai-viet/1627/giai-sgk-toan-7-bai-10-ket-noi-tri-thuc-tien-de-euclid-tinh-chat-cua-hai-duong-thang-song-song

Giải thích các bước giải:

a.Ta có xy//BC,MD//AB��//��,��//��

→AD//BM,AB//DM→ˆBMA=ˆMAD,ˆBAM=ˆAMD→��//��,��//��→���^=���^,���^=���^

Mà ΔABM,ΔMDAΔ���,Δ��� chung cạnh AM��

→ΔABM=ΔMDA(g.c.g)→Δ���=Δ���(�.�.�)

→AD=BM,MD=AB→��=��,��=��

Tương tự chứng minh được AE=MC,ME=AC��=��,��=��

→DE=DA+AE=BM+MC=BC→��=��+��=��+��=��

→ΔABC=ΔMDE(c.c.c)→Δ���=Δ���(�.�.�)

b.Gọi AM∩BD=I��∩��=�

→ˆIAD=ˆIMB,ˆIDA=ˆIBM(AD//BM)→���^=���^,���^=���^(��//��)

Mà AD=BM��=��

→ΔIAD=ΔIMB(g.c.g)→Δ���=Δ���(�.�.�)

→IA=IM,IB=ID→��=��,��=��

Lại có AE//CM→ˆEAI=ˆIMC��//��→���^=���^

Kết hợp AE=CM��=��

→ΔIAE=ΔIMC(c.g.c)→Δ���=Δ���(�.�.�)

→ˆAIE=ˆMIC→���^=���^

→ˆEIC=ˆAIE+ˆAIC=ˆMIC+ˆAIC=ˆAIM=180o→���^=���^+���^=���^+���^=���^=180�

→E,I,C→�,�,� thẳng hàng

→CE,AM,BD→��,��,�� đồng quy

image  
11 tháng 12 2016

Ta có hình vẽ sau:

K B A C 1 2 O

a) Vì AB = AC => ΔABC cân => \(\widehat{ABC}=\widehat{ACB}\)

Xét ΔABO và ΔACO có:

AO: cạnh cung

\(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)

OB = OC (gt)

=> ΔABO = ΔACO (đpcm)

b) Vì AK // BC(gt) => \(\widehat{KAB}=\widehat{ABO}\) (so le trong)

\(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{KAB}=\widehat{ACB}\) (*)

Vì ΔABO = ΔACO (ý a) => \(\widehat{A_1}=\widehat{A_2}\)

\(\widehat{A_1}=\widehat{ABK}\) (so le trong do AK // BC)

=> \(\widehat{A_2}=\widehat{ABK}\) (**)

Xét ΔABK và ΔACO có:

\(\widehat{KAB}=\widehat{ACB}\) (*)

AB = AC (gt)

\(\widehat{A_2}=\widehat{ABK}\) (**)

=> ΔABK = ΔACO (g.c.g)

=> AK = OC (đpcm)

 

11 tháng 12 2016

 

 

Kẹo dẻo

à mính

Kẹo dẻo

 

a) Xét ∆AMB và ∆AMC có : 

BM =  MC ( M là trung điểm BC )

AM chung 

AB = AC 

=> ∆AMB = ∆AMC (c.c.c)

b) Vì AB = AC 

=> ∆ABC cân tại A 

Mà AM là trung tuyến 

=> AM \(\perp\)BC 

Mà a\(\perp\)AM 

=> a//BC ( từ vuông góc tới song song )

c) Vì CN//AM (gt)

AN//MC ( a//BC , M thuộc BC)

=> ANCM là hình bình hành 

=> NC = AM , AN = MC

Mà AMC = 90° 

=> ANCM là hình chữ nhật 

=> NAM = AMC = MCN =  CNA = 90° 

Xét ∆ vuông NAC và ∆ vuông MCA có : 

AN = MC

AM = CN

=> ∆NAC = ∆MCA (ch-cgv)

d) Vì ANCM là hình chữ nhật (cmt)

=> AC = MN , I là trung điểm 2 đường chéo NM và AC (dpcm)