K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

Bài này là một bài cơ bản, bạn nên tự làm

9 tháng 4 2017

a)F(x)=8+(-5x+3x)+(6x2 -3x2)+3x3

=8-2x+3x2+3x3

G(x)=-6+(12x2-9x2)+3x3

=-6+3x2+3x3

b)P(x)=8-2x+3x2+3x3-6+3x2+3x3

=(8-6)-2x+(3x2+3x2)+(3x3+3x3)

=2-2x+6x2+6x3

d)_thay \(\dfrac{1}{3}\) vào biểu thức F(x) ta có:

8-2.\(\dfrac{1}{3}\)+\(3.\left(\dfrac{1}{3}\right)^2\)+3.\(\left(\dfrac{1}{3}\right)^3\)

8-\(\dfrac{2}{3}\)+3.\(\dfrac{1}{9}\)+3.\(\dfrac{1}{27}\)

8-\(\dfrac{2}{3}\)+\(\dfrac{3}{9}\)+\(\dfrac{3}{27}\)

8-\(\dfrac{10}{27}\)

\(\dfrac{206}{27}\)

biểu thức G(x) tương tự chỗ nào có x bạn thay thành \(-\dfrac{1}{3}\)và tính thôi

c)mình chịu

12 tháng 4 2022

\(f\left(x\right)=x^3-2x^2+3x+2\)

\(g\left(x\right)=-x^3-3x^2+2\)

12 tháng 4 2022

\(f\left(x\right)+g\left(x\right)=x^3-2x^2+3x+2+\left(-x^3\right)+3x^2+2\)

\(f\left(x\right)+g\left(x\right)=x^2+3x+4\)

\(f\left(x\right)-g\left(x\right)=x^3-2x^2+3x+2+x^3+3x^2-2\)

\(f\left(x\right)-g\left(x\right)=2x^3+x^2+3x\)

11 tháng 4 2022

\(a,\)

\(\Rightarrow f\left(x\right)=x^4-x^3+3x-1\)

\(\Rightarrow g\left(x\right)=x^4+4x^3+x-5\)

\(b,\)

\(A\left(x\right)=f\left(x\right)-g\left(x\right)=x^4-x^3+3x-1-x^4-4x^3-x+5\)

                                  \(=-5x^3-x+4\)

\(B\left(x\right)=f\left(x\right)+g\left(x\right)=x^4-x^3+3x-1+x^4+4x^3+x-5\)

                                 \(=2x^4+3x^3+4x-6\)

\(c,\)

Thay \(x=-2\) vào \(A\left(x\right)\) , ta được :

\(A\left(x\right)=-5.\left(-2\right)^3+2+4=46\)

Thay \(x=2\) vào \(A\left(x\right)\) , ta được :

\(A\left(x\right)=-5.2^3-2+4=-38\)

a: \(P\left(x\right)=3x^2-x-1\)

\(Q\left(x\right)=-3x^2-4x-2\)

b: \(G\left(x\right)=3x^2-x-1+3x^2+4x+2=6x^2+3x+1\)

c: Để G(x)-6x-1=0 thì 6x2-3x=0

=>3x(2x-1)=0

=>x=0 hoặc x=1/2

Bài 1:

a) Ta có: \(P\left(x\right)=3x^4+2x^2-3x^4-2x^2+2x-5\)

\(=\left(3x^4-3x^4\right)+\left(2x^2-2x^2\right)+2x-5\)

\(=2x-5\)

Bài 1: 

b) 

\(P\left(-1\right)=2\cdot\left(-1\right)-5=-2-5=-7\)

\(P\left(3\right)=2\cdot3-5=6-5=1\)

19 tháng 5 2018

a, Thu gọn: F(x) = – 5x3 + 6x2 + 3x – 1; G(x) = – 5x3 + 6x2 + 4x + 2

b, Tìm được:M(x) = F(x) – G(x) = – x – 3 ;

N(x) = F(x) + G(x) = – 10x3 + 12x2 + 7x + 1

c, Nghiệm của đa thức M(x): x = – 3

8 tháng 6 2018

Giải:

a) Thu gọn và sắp xếp:

\(F\left(x\right)=5x^2-1+3x+x^2-5x^3\)

\(\Leftrightarrow F\left(x\right)=6x^2-1+3x-5x^3\)

\(\Leftrightarrow F\left(x\right)=-5x^3+6x^2+3x-1\)

\(G\left(x\right)=2-3x^3+6x^2+5x-2x^3-x\)

\(\Leftrightarrow G\left(x\right)=2-5x^3+6x^2+4x\)

\(\Leftrightarrow G\left(x\right)=-5x^3+6x^2+4x+2\)

b) \(M\left(x\right)=F\left(x\right)-G\left(x\right)\)

\(\Leftrightarrow M\left(x\right)=-5x^3+6x^2+3x-1-\left(-5x^3+6x^2+4x+2\right)\)

\(\Leftrightarrow M\left(x\right)=-5x^3+6x^2+3x-1+5x^3-6x^2-4x-2\)

\(\Leftrightarrow M\left(x\right)=-x-3\)

\(N\left(x\right)=F\left(x\right)+G\left(x\right)\)

\(\Leftrightarrow N\left(x\right)=-5x^3+6x^2+3x-1+\left(-5x^3+6x^2+4x+2\right)\)

\(\Leftrightarrow N\left(x\right)=-5x^3+6x^2+3x-1-5x^3+6x^2+4x+2\)

\(\Leftrightarrow N\left(x\right)=-10x^3+12x^2+7x+1\)

c) Để đa thức M(x) có nghiệm

\(\Leftrightarrow M\left(x\right)=0\)

\(\Leftrightarrow-x-3=0\)

\(\Leftrightarrow-x=3\)

\(\Leftrightarrow x=-3\)

Vậy ...

5 tháng 6 2020

a) f(x) = -x + 2x2 + 3x5 + 9/2

g(x) = 3x - 2x2 - 3x5 + 3

b) f(x) + g(x) = ( -x + 2x2 + 3x5 + 9/2 ) + ( 3x - 2x2 - 3x5 + 3 )

                     = ( -x + 3x ) + ( 2x2 - 2x2 ) + ( 3x5 - 3x5 ) + ( 9/2 + 3 )

                     = 2x + 15/2

c) Đặt h(x) = 2x + 15/2

Để h(x) có nghiệm <=> 2x + 15/2 = 0

                              <=> 2x = -15/2

                              <=> x = -15/4

Vậy nghiệm của h(x) là -15/4

Quỳnh chưa sắp xếp nhé !, sai bảo cj, cj sửa.

a, Ta có :  \(f\left(x\right)=-x+2x^2-\frac{1}{2}+3x^5+5\)

\(=-x+2x^2+\frac{9}{2}+3x^5\)

Sắp xếp : \(f\left(x\right)=3x^5+2x^2-x+\frac{9}{2}\)

\(g\left(x\right)=3-x^5+\frac{1}{3}x^3+3x-2x^5-2x^2-\frac{1}{3}x^3\)

\(=3-3x^5+3x-2x^2\)

Sắp xếp : \(g\left(x\right)=-3x^5-2x^2+3x+3\)

b, \(f\left(x\right)+g\left(x\right)=\left(3x^5+2x^2-x+\frac{9}{2}\right)+\left(-3x^5-2x^2+3x+3\right)\)

\(=3x^5+2x^2-x+\frac{9}{2}-3x^5-2x^2+3x+3\)

\(=2x+\frac{15}{2}\)

c, \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)

Đặt f(x) + g(x) = 2x + 15/2  (đã có bên trên.)

Ta có : \(h\left(x\right)=2x+\frac{15}{2}=0\)

\(\Leftrightarrow2x+\frac{15}{2}=0\Leftrightarrow2x=-\frac{15}{2}\Leftrightarrow x=-\frac{15}{4}\)

18 tháng 6 2018

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

18 tháng 6 2018

mk xin lỗi nha mk bị ddoootj nhập nik

\(f\left(x\right)+g\left(x\right)=\left(-3x^2+x-1+x^4-x^3-x^2+3x^4+2x^3\right)+\left(x^4+...\right)\)

bn chỉ cần nhóm các số hạng của đa thức là ok ngay

cho xl nha@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@