K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

Đặt tính chia tìm thương và dư của f(x) cho g(x) ta được:

\(f\left(x\right)=g\left(x\right)\cdot\left(6x^2-x+a-6b-1\right)+\left[\left(a-5b+2\right)+\left(6b^2+b-ab+2\right)\right]\)

Vậy để f(x) chia hết cho g(x) thì dư phải bằng 0, khi đó:

\(\hept{\begin{cases}a-5b+2=0\\6b^2+b-ab+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=5b-2\\6b^2+b-b\left(5b-2\right)+2=0\Rightarrow b^2+3b+2=0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}b=-1\Rightarrow a=-7\\b=-2\Rightarrow a=-12\end{cases}}\)

Vậy các giá trị cần xác định của a, b để f(x) chia hết cho g(x) là (a;b) = (-7;-1) , (-12;-2)

27 tháng 6 2017

Hay ghê :)

24 tháng 12 2017

cái này chắc dùng đồng nhất rồi

21 tháng 4 2019

Để \(f\left(x\right)⋮g\left(x\right)\)thì \(f\left(x\right)=g\left(x\right)\cdot q\)( với q là hằng số )

Khi đó ta có pt :

\(x^5-2x^4-6x^3+ax^2+bx+c=\left(x^2-1\right)\left(x-3\right)\cdot q\)

\(\Leftrightarrow x^5-2x^4-6x^3+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\left(x-3\right)\cdot q\)

Vì pt trên đúng với mọi x nên :

+) đặt \(x=1\)

\(pt\Leftrightarrow1^5-2\cdot1^4-6\cdot1^3+a\cdot1^2+b\cdot1+c=\left(1-1\right)\left(1+1\right)\left(1-3\right)\cdot q\)

\(\Leftrightarrow-7+a+b+c=0\)

\(\Leftrightarrow a+b+c=7\)(1)

Chứng minh tương tự, lần lượt đặt \(x=-1\)và \(x=3\)ta có các pt :

\(\hept{\begin{cases}3+a-b+c=0\\-81+9a+3b+c=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b+c=-3\\9a+3b+c=81\end{cases}}}\)(2)

Từ (1) và (2) ta có hệ pt 3 ẩn :

\(\hept{\begin{cases}a+b+c=7\\a-b+c=-3\\9a+3b+c=81\end{cases}}\)

Giải hệ ta được \(\hept{\begin{cases}a=8\\b=5\\c=-6\end{cases}}\)

Vậy....

AH
Akai Haruma
Giáo viên
28 tháng 7 2019

Lời giải:

Ta có:
\(f(x)=6x^4-7x^3+ax^2+3x+2\)

\(=6x^2(x^2-x-b)+6bx^2-x^3+ax^2+3x+2\)

\(=6x^2(x^2-x-b)-x(x^2-x-b)-x^2-bx+6bx^2+ax^2+3x+2\)

\(=6x^2(x^2-x-b)-x(x^2-x-b)+(a+6b-1)(x^2-x-b)+x(a+6b-1)+b(a+6b-1)-bx+3x+2\)

\(=(6x^2-x+a+6b-1)(x^2-x-b)+x(a+6b-1-b+3)+b(a+6b-1)+2\)

\(=(6x^2-x+a+6b-1)g(x)+x(a+6b-b+2)+b(a+6b-1)+2\)

Để $f(x)$ chia hết cho $g(x)$ với mọi $x$ thì \(x(a+6b-b+2)+b(a+6b-1)+2=0\) với mọi $x$

Điều này xảy ra khi :

\(\left\{\begin{matrix} a+6b-b+2=0\\ b(a+6b-1)+2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+6b-1=b-3\\ b(a+6b-1)+2=0\end{matrix}\right.\)

\(\Rightarrow b(b-3)+2=0\)

\(\Leftrightarrow (b-1)(b-2)=0\Rightarrow \left[\begin{matrix} b=1\\ b=2\end{matrix}\right.\)

Nếu \(b=1\Rightarrow a=-2-5b=-7\)

Nếu \(b=2\Rightarrow a=-2-5b=-12\)

Vậy........