Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt tính chia tìm thương và dư của f(x) cho g(x) ta được:
\(f\left(x\right)=g\left(x\right)\cdot\left(6x^2-x+a-6b-1\right)+\left[\left(a-5b+2\right)+\left(6b^2+b-ab+2\right)\right]\)
Vậy để f(x) chia hết cho g(x) thì dư phải bằng 0, khi đó:
\(\hept{\begin{cases}a-5b+2=0\\6b^2+b-ab+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=5b-2\\6b^2+b-b\left(5b-2\right)+2=0\Rightarrow b^2+3b+2=0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}b=-1\Rightarrow a=-7\\b=-2\Rightarrow a=-12\end{cases}}\)
Vậy các giá trị cần xác định của a, b để f(x) chia hết cho g(x) là (a;b) = (-7;-1) , (-12;-2)
a)ta có:
\(f\left(x\right):\left(x+1\right)\: dư\: 6\Rightarrow f\left(x\right)-6⋮\left(x+1\right)\\ hay\: 1-a+b-6=0\\ \Leftrightarrow b-a-5=0\Leftrightarrow b-a=5\left(1\right)\)
tương tự: \(2^2+2a+b-3=0\\ 2a+b=-1\left(2\right)\)
từ (1) và(2) => \(\left\{{}\begin{matrix}b-a=5\\2a+b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)
Câu a :
Theo đề bài ta có hệ phương trình :
\(\left\{{}\begin{matrix}f\left(-1\right)=1-a+b=6\\f\left(2\right)=4+2a+b=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\2a+b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)
Vậy đa thức \(f\left(x\right)=x^2-2x+3\)
a) Do đa thức bị chia có bậc 3
đa thức chia có bậc 2
nên đa thức thương là nhị thức bậc nhất.
\(\Rightarrow\) Hạng tử bậc nhất: \(x^3:x^2=x\)
\(Đặt\text{ }đa\text{ }thức\text{ }thương\text{ }là:x+c\\ \RightarrowĐể\text{ }f_{\left(x\right)}⋮g_{\left(x\right)}\\ thì\Rightarrow x^3\: +ax^2+2x+b=\left(x^2+2x+3\right)\left(x+c\right)\\ =x^3+2x^2+3x+cx^2+2cx+3c\\ =x^3+\left(c+2\right)x^2+\left(2c+3\right)x+3c\\ \Rightarrow\left\{{}\begin{matrix}c+2=a\\2c+3=2\\3c=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=c+2\\c=-\dfrac{1}{2}\\b=3c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=-\dfrac{3}{2}\end{matrix}\right.\\ Vậy\text{ }để\text{ }f_{\left(x\right)}⋮g_{\left(x\right)}\text{ }thì\text{ }a=\dfrac{3}{2};b=-\dfrac{3}{2}\)
b) Do đa thức bị chia có bậc 4
đa thức chia có bậc 2
nên đa thức thương là tam thức 2
\(\Rightarrow\) Hạng tử bậc 2: \(x^4:x^2=x^2\)
\(\RightarrowĐể\text{ }f_{\left(x\right)}⋮g_{\left(x\right)}\\ thì\Rightarrow x^4-3x^3+3x^2+ax+b=\left(x^2-3x+4\right)\left(x^2+cx+d\right)\\ =x^4+cx^3+dx^2-3x^3-3cx^2-3dx+4x^2+4cx+4d\\ =x^4+\left(c-3\right)x^3+\left(d-3c+4\right)x^2+\left(4c-3d\right)x+4d\\ \Rightarrow\left\{{}\begin{matrix}c-3=-3\Rightarrow c=0\\d-3c+4=3\\4c-3d=a\\4d=b\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}d-0+4=3\Rightarrow d=-1\\0-3d=a\\4d=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=3\\b=-4\end{matrix}\right.\\ Vậy\text{ }để\text{ }f_{\left(x\right)}⋮g_{\left(x\right)}\text{ }thì\text{ }a=3;b=-4\)
c) Do đa thức bị chia có bậc 4
đa thức chia có bậc 2
nên đa thức thương là nhị thức bậc 2
\(\Rightarrow\) Hạng tử bậc 2: \(x^4:x^2=x^2\)
Đặt đa thức thương là \(x^2+cx+d\)
\(\RightarrowĐể\text{ }f_{\left(x\right)}⋮g_{\left(x\right)}\\ thì\Rightarrow x^4-3x^3+bx^2+ax+b=\left(x^2-1\right)\left(x^2+cx+d\right)\\ =x^4+cx^3+dx^2-x^2-cx-d\\ =x^4+cx^3+\left(d-1\right)x^2-cx-d\\ \Rightarrow\left\{{}\begin{matrix}c=-3\\d-1=b\\-c=a\\-d=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-3\\b=-\dfrac{1}{2}\end{matrix}\right.\\ Vậy\text{ }để\text{ }f_{\left(x\right)}⋮g_{\left(x\right)}thì\text{ }a=-3;b=-\dfrac{1}{2}\)
Câu a , b bạn Trần Quốc Lộc làm rồi , câu c mk làm cách k phải hệ số bất định cho
c) Do đa thức chia có bậc 4 , đa thức bị chia có bậc 2 . Suy ra thương có bậc 2
Đặt đa thức chia là : f( x )
Gọi thương của phép chia là q( x) , ta có :
f( x ) = ( x2 - 1). q( x) , với mọi x
(=) x4 - 3x3 + bx2 + ax + b = ( x2 - 1). q( x) , với mọi x ( 1)
Chọn các giá trị riêng của x sao cho :
x2 - 1 = 0 (=) x = 1 hoặc x = - 1
* Với x = 1 , ta có :
(1) <=> - 2 + 2b + a = 0 ( 2)
* Với x = - 1 , ta có :
( 1) <=> 4 + 2b - a = 0 ( 3)
Từ ( 2 , 3 ) ta nhận được : a = 3 ; b = \(-\dfrac{1}{2}\)
Vậy , với a = 3 ; b = \(-\dfrac{1}{2}\) thỏa mãn điều kiện đầu bài
C1: Gọi đa thức thương là Q(x)
Vì x^4 : x^2 = x^2
=> đa thức có dạng x^2+mx+n
Đề x^4 - 3x^2 + ax+b chia hết x^2 - 3x + 2
=> x^4 - 3x^2 + ax + b = (x^2 - 3x + 2)(x^2 + mx + n)
x^4+ 0x^3 - 3x^2 +ax+b = x^4 +mx^3 +(x^2)n -3x^3 -3mx^2 - 3xn + 2x^2 + 2mx + 2n
x^4 + 0x^3 -3x^2 + ax+b = x^4 + x^3(m-3) - x^2(3m - n -2) +x(2m - 3n) +2n
<=>| 0 = m-3 <=> | m = 3
| 3=3m-n-2 | b= 8
| a=2m-3n | n = 4
| b = 2n | a = -6
Vậy a= -6, b= 8
Để \(f\left(x\right)⋮g\left(x\right)\)thì \(f\left(x\right)=g\left(x\right)\cdot q\)( với q là hằng số )
Khi đó ta có pt :
\(x^5-2x^4-6x^3+ax^2+bx+c=\left(x^2-1\right)\left(x-3\right)\cdot q\)
\(\Leftrightarrow x^5-2x^4-6x^3+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\left(x-3\right)\cdot q\)
Vì pt trên đúng với mọi x nên :
+) đặt \(x=1\)
\(pt\Leftrightarrow1^5-2\cdot1^4-6\cdot1^3+a\cdot1^2+b\cdot1+c=\left(1-1\right)\left(1+1\right)\left(1-3\right)\cdot q\)
\(\Leftrightarrow-7+a+b+c=0\)
\(\Leftrightarrow a+b+c=7\)(1)
Chứng minh tương tự, lần lượt đặt \(x=-1\)và \(x=3\)ta có các pt :
\(\hept{\begin{cases}3+a-b+c=0\\-81+9a+3b+c=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b+c=-3\\9a+3b+c=81\end{cases}}}\)(2)
Từ (1) và (2) ta có hệ pt 3 ẩn :
\(\hept{\begin{cases}a+b+c=7\\a-b+c=-3\\9a+3b+c=81\end{cases}}\)
Giải hệ ta được \(\hept{\begin{cases}a=8\\b=5\\c=-6\end{cases}}\)
Vậy....
cái này chắc dùng đồng nhất rồi