Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt tính chia tìm thương và dư của f(x) cho g(x) ta được:
\(f\left(x\right)=g\left(x\right)\cdot\left(6x^2-x+a-6b-1\right)+\left[\left(a-5b+2\right)+\left(6b^2+b-ab+2\right)\right]\)
Vậy để f(x) chia hết cho g(x) thì dư phải bằng 0, khi đó:
\(\hept{\begin{cases}a-5b+2=0\\6b^2+b-ab+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=5b-2\\6b^2+b-b\left(5b-2\right)+2=0\Rightarrow b^2+3b+2=0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}b=-1\Rightarrow a=-7\\b=-2\Rightarrow a=-12\end{cases}}\)
Vậy các giá trị cần xác định của a, b để f(x) chia hết cho g(x) là (a;b) = (-7;-1) , (-12;-2)
Bài 1 :
Gọi f( x ) = 2n2 + n - 7
g( x ) = n - 2
Cho g( x ) = 0
\(\Leftrightarrow\)n - 2 = 0
\(\Rightarrow\)n = 2
\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7
\(\Rightarrow\)f( 2 ) = 3
Để f( x ) \(⋮\)g( x )
\(\Rightarrow\)n - 2 \(\in\)Ư( 3 ) = { \(\pm\)1 ; \(\pm\)3 }
Ta lập bảng :
n - 2 | 1 | - 1 | 3 | - 3 |
n | 3 | 1 | 5 | - 1 |
Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }
a) Dư của f(x ) chia cho x+2 là f(-2)
Áp dụng định lý Bơ-zu ta có :
\(f\left(-2\right)=\left(-2\right)^3+3.\left(-2\right)^2+a\)
\(=-8+12+a\)
\(=4+a\)
\(\Leftrightarrow a=-4\)
Vậy để f(x) chia hết cho x+2 => a= -4
b) Dư của f(x ) chia cho x-1 là f(1)
Áp dụng định lí Bơ-zu ta có :
\(f\left(1\right)=1^2-3.1+a\)
\(=1-3+a\)
\(=-2+a\)
\(\Rightarrow a=2\)
Vậy ..............
c)
Đặt phép chia dọc theo đa thức 1 biến đã sắp xếp
d) Theo định lí Bơ-zu ta có :
\(f\left(x\right):x+1\)có dư là \(f\left(-1\right)\)
\(f\left(-1\right)=\left(-1\right)^3+a.\left(-1\right)+b\)
\(=-a+b-1\)
Mà theo đề bài cho dư = 7
\(\Rightarrow-a+b-1=7\)
\(\Rightarrow-a+b=8\) (1)
Tương tự :
\(f\left(x\right):x-1\)có dư là \(f\left(1\right)\)
\(f\left(1\right)=1^3+a.1+b\)
\(=a+b+1\)
Theo đề bài cho dư 7
\(\Rightarrow a+b+1=7\)
\(\Rightarrow a+b=6\)(2)
Từ (1) và (2) ( cộng vế với vế)
\(\Rightarrow\hept{\begin{cases}a+b=6\\-a+b=8\end{cases}}\)
\(\Rightarrow2b=14\)
\(\Rightarrow b=7\)
\(\Leftrightarrow a+7=6\)
\(\Rightarrow a=-1\)
Vậy \(f\left(x\right)=x^3-x+7\)
Lời giải:
Ta có:
\(f(x)=6x^4-7x^3+ax^2+3x+2\)
\(=6x^2(x^2-x-b)+6bx^2-x^3+ax^2+3x+2\)
\(=6x^2(x^2-x-b)-x(x^2-x-b)-x^2-bx+6bx^2+ax^2+3x+2\)
\(=6x^2(x^2-x-b)-x(x^2-x-b)+(a+6b-1)(x^2-x-b)+x(a+6b-1)+b(a+6b-1)-bx+3x+2\)
\(=(6x^2-x+a+6b-1)(x^2-x-b)+x(a+6b-1-b+3)+b(a+6b-1)+2\)
\(=(6x^2-x+a+6b-1)g(x)+x(a+6b-b+2)+b(a+6b-1)+2\)
Để $f(x)$ chia hết cho $g(x)$ với mọi $x$ thì \(x(a+6b-b+2)+b(a+6b-1)+2=0\) với mọi $x$
Điều này xảy ra khi :
\(\left\{\begin{matrix} a+6b-b+2=0\\ b(a+6b-1)+2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+6b-1=b-3\\ b(a+6b-1)+2=0\end{matrix}\right.\)
\(\Rightarrow b(b-3)+2=0\)
\(\Leftrightarrow (b-1)(b-2)=0\Rightarrow \left[\begin{matrix} b=1\\ b=2\end{matrix}\right.\)
Nếu \(b=1\Rightarrow a=-2-5b=-7\)
Nếu \(b=2\Rightarrow a=-2-5b=-12\)
Vậy........