Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (O) có
CD là dây cung(C,D∈(O))
B là điểm chính giữa của \(\stackrel\frown{CD}\)(gt)
Do đó: \(\stackrel\frown{CB}=\stackrel\frown{BD}\)
⇒\(sđ\widehat{CB}=sđ\widehat{BD}\)(1)
Xét (O) có
\(\widehat{BMD}\) là góc nội tiếp chắn cung BD(gt)
nên \(\widehat{BMD}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BD}\)(Định lí góc nội tiếp)(2)
Xét (O) có
\(\widehat{BAC}\) là góc nội tiếp chắn cung BC(gt)
nên \(\widehat{BAC}=\dfrac{1}{2}\cdot sđ\widehat{CB}\)(Định lí góc nội tiếp)(3)
Từ (1), (2) và (3) suy ra \(\widehat{BMD}=\widehat{BAC}\)(đpcm)
a. Do ABCM là tứ giác nội tiếp nên \(\widehat{AMx}=\widehat{ABC}\)
Lại do tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\)
Mà \(\widehat{ACB}=\widehat{AMB}\) (Góc nội tiếp cùng chắn cung AB)
Vậy nên \(\widehat{AMB}=\widehat{AMx}\) hay MA là phân giác góc \(\widehat{BMx}.\)
b. Do tam giác ABC cân tại A nên AI là phân giác góc BAC. Vậy thì cung BI = cung CI hay góc \(\widehat{BMI}=\widehat{IKC}\)
Từ đó suy ra \(\widehat{DMI}=\widehat{IKD}\) (Cùng phụ với hai góc trên)
Lại có do MD = MC \(\Rightarrow\widehat{MDK}=\widehat{MCK}=\widehat{MIK}\)
Tứ giác DMIK có các góc đối bằng nhau nên nó là hình bình hành.
c. Do MA là phân giác góc BMx nên MA thuộc đường phân giác góc DMC.
Lại có MD = MC nên MA chính là đường trung trực của DC.
Vậy thì DA = AC, hay D luôn thuộc đường tròn tâm A, bán kính AC.
Do I là trực tâm của tam giác KAB nên K, I, H thẳng hàng.
Tứ giác AMIH nội tiếp nên \(\widehat{MHI}=\widehat{MAI}\).
Tương tự, \(\widehat{NHI}=\widehat{NBI}\).
Lại có \(\widehat{MAI}=\widehat{NBI}=90^o-\widehat{AKB}\) nên \(\widehat{MHI}=\widehat{NHI}\).
Vậy HK là phân giác của góc MHN.
BP//KM
=>PK=BM
=>PK=AN
mà PK//AN
nên ANKP là hình bình hành