K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2021

a) Ta có: \(\angle ABO+\angle ACO=90+90=180\Rightarrow ABOC\) nội tiếp 

Lại có: \(\angle AIO=\angle ABO=90\Rightarrow ABIO\) nội tiếp

\(\Rightarrow A,B,I,O,C\) cùng thuộc 1 đường tròn

\(\Rightarrow ABIC\) nội tiếp 

\(\Rightarrow\angle AIB=\angle ACB=\angle ABC\) (\(\Delta ABC\) cân tại A) \(=\angle AIC\)

\(\Rightarrow IA\) là phân giác \(\angle CIB\)

b) Xét \(\Delta ABM\) và \(\Delta ANB:\) Ta có: \(\left\{{}\begin{matrix}\angle ABM=\angle ANB\\\angle NABchung\end{matrix}\right.\)

\(\Rightarrow\Delta ABM\sim\Delta ANB\left(g-g\right)\Rightarrow\dfrac{AB}{AN}=\dfrac{AM}{AB}\Rightarrow AB^2=AM.AN\)

mà \(AB^2=AH.AO\) (hệ thức lượng) \(\Rightarrow AH.AO=AM.AN\)

\(\Rightarrow\dfrac{AH}{AM}=\dfrac{AN}{AO}\)

Xét \(\Delta AHM\) và \(\Delta ANO:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{AH}{AM}=\dfrac{AN}{AO}\\\angle NAOchung\end{matrix}\right.\)

\(\Rightarrow\Delta AHM\sim\Delta ANO\left(c-g-c\right)\Rightarrow\angle AHM=\angle ANO\)

\(\Rightarrow MHON\) nội tiếp \(\Rightarrow H\in\left(OMN\right)\)undefined

8 tháng 3 2022

a, Vì AM; AN lần lượt là tiếp tuyến đường tròn (O) với M;N là tiếp điểm 

=> ^AMO = ^ANO = 900

mà AM = AN (tc tiếp tuyến cắt nhau) ; OM = ON = R 

Vậy OA là đường trung trực đoạn MN => OA vuông MN 

Xét tứ giác AMON có 

^AMO + ^ANO = 1800

mà 2 góc này đối Vậy tứ giác AMON là tứ giác nt 1 đường tròn 

b, Xét tam giác AMB và tam giác ACM có 

^A _ chung ; ^AMB = ^ACB ( cùng chắn cung BM ) 

Vậy tam giác AMB ~ tam giác ACM (g.g)

\(\dfrac{AM}{AC}=\dfrac{AB}{AM}\Rightarrow AM^2=AB.AC\)

c, Xét tam giác OMA vuông tại M, đường cao MH 

Ta có \(AM^2=AH.AO\)( hệ thức lượng ) 

=> \(AB.AC=AH.AO\Rightarrow\dfrac{AB}{AO}=\dfrac{AH}{AC}\)

Xét tam giác ABH và tam giác AOC có 

^A _ chung 

\(\dfrac{AB}{AO}=\dfrac{AH}{AC}\left(cmt\right)\)

Vậy tam giác ABH ~ tam giác AOC (c.g.c) 

=> ^ABH = ^AOC ( góc ngoài đỉnh B )

Vậy tứ giác BHOC là tứ giác nt 1 đường tròn 

d, Ta có BHOC nt 1 đường tròn (cmc) 

=> ^OHC = ^OBC (góc nt chắc cung CO) 

=> ^AHB = ^ACO (góc ngoài đỉnh H) 

mà ^OCB = ^OBC do OB = OC = R nên tam giác OBC cân tại O

=> ^OHC = ^AHB 

mà ^CHN = 900 - ^OHC 

^NHB = 900 - ^AHB 

=> ^CHN = ^NHB 

=> HN là phân giác của ^BHC 

26 tháng 3 2022

a, Ta có AM ; AN lần lượt là tiếp tuyến (O) 

=> ^AMO = ^ANO = 900

Xét tứ giác AMON có ^AMO + ^ANO = 1800 

mà 2 góc này đối 

Vậy tứ giác AMON là tứ giác nt 1 đường tròn 

b, Xét tam giác AMB và tam giác ACM ta có 

^A _ chung ; ^AMB = ^ACM ( cùng chắn BM ) 

Vậy tam giác AMB ~ tam giác ACM (g.g) 

c, Ta có AM = AN ( tc tiếp tuyến cắt nhau ) 

ON = OM = R => OA là đường trung trực đoạn MN 

Xét tam giác AMO vuông tại M, đường cao MH 

=> AM^2 = AH.AO 

=> AB . AC = AH . AO => AB/AO = AH/AC 

Xét tam giác ABH và tam giác AOC có

^A _ chung ; AB/AO = AH/AC (cmt) 

Vậy tam giác ABH ~ tam giác AOC (c.g.c) 

=> ^ABH = ^AOC ( mà ^ABH là góc ngoài đỉnh B ) 

Vậy tứ giác BHOC là tứ giác nt 1 đường tròn 

 

6 tháng 6 2021

do I là trung điểm của MN

⇒I là trung trực của MN

⇒I⊥MN

⇒∠OIM=90⇔∠OIA=90

xét tứ giác ABIO có ∠OBA=∠OIA=90

⇒ABIO nội tiếp 

⇒∠BIA=∠AOB (cùng chắn \(\stackrel\frown{AB}\)(1)

xét tứ giác ACOI có ∠OIA=∠OCA=90

⇒ACOI nội tiếp

⇒∠AIC=∠AOC (cùng chắn \(\stackrel\frown{AC}\)) (2)

xét tứ giác ABOC nội tiếp đường tròn ; AB=AC

⇒∠AOB=∠AOC (chắn 2 cung = nhau) (3)

từ (1);(2);(3) ⇒∠BIA=∠AIC

⇒IA là tia phân giác ∠BIC

24 tháng 8 2019

Theo giả thiết AMO = ANO = AIO = 90o = > 5 điểm A, O, M, N, I thuộc đường tròn đường kính AO 0,25

=> AIN = AMN, AIM = ANM (Góc nội tiếp cùng chắn một cung)

AM = AN => ∆AMN cân tại A => AMN = ANM

=> AIN = AIM => đpcm

22 tháng 7 2023

O A M N

Xét tg vuông AMO và tg vuông ANO có

AO chung; OM=ON (bán kính (O))

=> tg AMO = tg ANO (Hai tg vuông có 2 cạnh góc vuông bằng nhau)

\(\Rightarrow AM=AN\) (đpcm)

\(\Rightarrow\widehat{MAO}=\widehat{NAO}\) => AO là phân giác \(\widehat{MAN}\) (đpcm)

\(\Rightarrow\widehat{AOM}=\widehat{AON}\) => AO là phân giác \(\widehat{MON}\) (đpcm)

a: Xét (O) có 

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AO là đường trung trực của BC