Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác OMAN có
\(\widehat{OMA}+\widehat{ONA}=90^0+90^0=180^0\)
=>OMAN là tứ giác nội tiếp
=>O,M,A,N cùng thuộc một đường tròn
b: ΔOBN cân tại O
mà OI là đường phân giác
nên OI\(\perp\)BN và OI là đường trung trực của BN
Xét ΔOBI và ΔONI có
OB=ON
\(\widehat{BOI}=\widehat{NOI}\)
OI chung
Do đó: ΔOBI=ΔONI
=>\(\widehat{OBI}=\widehat{ONI}=90^0\)
=>IB là tiếp tuyến của (O)
c: Xét (O) có
AM,AN là tiếp tuyến
=>AM=AN
=>A nằm trên đường trung trực của MN(1)
OM=ON
=>O nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra AO là đường trung trực của MN
d: AO là đường trung trực của MN
=>AO cắt MN tại trung điểm của MN
=>K là trung điểm của MN
Giải thích các bước giải:
a/ Chứng minh: OA vuông góc MN.
Áp dụng tính chất 2 tiếp tuyến cắt nhau ta có AM=AN⇒AAM=AN⇒A thuộc trung trực của MN.
Lại có OM=ON=R⇒OOM=ON=R⇒O thuộc trung trực của MN
⇒OA⇒OA là trung trực của MN.
⇒OA⊥MN⇒OA⊥MN (1).
b/ Vẽ đường kính NOC. Chứng minh rằng: MC//AO.
Xét tam giác MNC có: MO=OC=ON=R⇒MC=12NCMO=OC=ON=R⇒MC=12NC
⇒ΔMNC⇒ΔMNC vuông tại M (Định lí đường trung tuyến)
⇒MN⊥MC⇒MN⊥MC (2).
Từ (1) và (2) => MC // AO.
c/ Tính độ dài các cạnh của tam giác AMN biết OM = 3 cm, OA = 5 cm.
Áp dụng định lí Pytago trong tam giác vuông OAM có:
AM2=OA2−OM2AM2=52−32=16AM=4(cm)=ANAM2=OA2−OM2AM2=52−32=16AM=4(cm)=AN
Gọi H là giao điểm của MN và OA.
⇒MN⊥AO⇒MN⊥AO tại H.
Áp dụng hệ thức lượng trong tam giác vuông OAM, đường cao MH có:
OM2=OH.OA⇒32=OH.5⇒OH=95(cm)⇒AH=OA−OH=165OM2=OH.OA⇒32=OH.5⇒OH=95(cm)⇒AH=OA−OH=165
⇒MH2=OH.AH=95.165⇒MH=125(cm)⇒MH2=OH.AH=95.165⇒MH=125(cm)
OA là trung trực của MN (cmt) ⇒H⇒H là trung điểm của MN
⇒MN=2MH=245(cm)⇒MN=2MH=245(cm).
a) Tam giác MAN cân tại A có OA là tia phân giác nên nó cũng trùng với đường cao. Vì vậy OA⊥MN.
b) Do AM, AN là hai tiếp tuyến cùng xuất phát từ một điểm nằm ngoài đường tròn nên AO là phân giác góc ^MAN và I là điểm chính giữa của cung MN. Từ đó ta có:
.
⇒ IM là phân giác góc ^NMA.
⇒ I là tâm đường tròn nội tiếp tam giác MNA.
c) Nếu tứ giác OMIN là hình thoi thì OM=ON=MI=IN=R.
Suy ra các tam giác OMI, ONI là tam giác đều. Vì vậy ^MON=^MOA+^AON=60o+60o=120o.
Suy ra ^MAN=180o−^MON=60o.
Ngược lại giả sử ^MAN=60o. Suy ra ^MON=180o−^MAN=120o.
Có OA là tia phân giác của góc MON nên ^MOA=^AON=120o:2=60o.
Suy ra các tam giác MOA, AON là tam giác đều hay tứ giác OMIN là hình thoi.
Vậy ^MAN=60o thì tứ giác OMIN là hình thoi.
a) Ta có: \(\angle ABO+\angle ACO=90+90=180\Rightarrow ABOC\) nội tiếp
Lại có: \(\angle AIO=\angle ABO=90\Rightarrow ABIO\) nội tiếp
\(\Rightarrow A,B,I,O,C\) cùng thuộc 1 đường tròn
\(\Rightarrow ABIC\) nội tiếp
\(\Rightarrow\angle AIB=\angle ACB=\angle ABC\) (\(\Delta ABC\) cân tại A) \(=\angle AIC\)
\(\Rightarrow IA\) là phân giác \(\angle CIB\)
b) Xét \(\Delta ABM\) và \(\Delta ANB:\) Ta có: \(\left\{{}\begin{matrix}\angle ABM=\angle ANB\\\angle NABchung\end{matrix}\right.\)
\(\Rightarrow\Delta ABM\sim\Delta ANB\left(g-g\right)\Rightarrow\dfrac{AB}{AN}=\dfrac{AM}{AB}\Rightarrow AB^2=AM.AN\)
mà \(AB^2=AH.AO\) (hệ thức lượng) \(\Rightarrow AH.AO=AM.AN\)
\(\Rightarrow\dfrac{AH}{AM}=\dfrac{AN}{AO}\)
Xét \(\Delta AHM\) và \(\Delta ANO:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{AH}{AM}=\dfrac{AN}{AO}\\\angle NAOchung\end{matrix}\right.\)
\(\Rightarrow\Delta AHM\sim\Delta ANO\left(c-g-c\right)\Rightarrow\angle AHM=\angle ANO\)
\(\Rightarrow MHON\) nội tiếp \(\Rightarrow H\in\left(OMN\right)\)
a: góc OMA+góc ONA=180 độ
=>OMAN nội tiếp
b: OMAN nội tiếp
=>góc AOM=góc ANM
mà góc AOM=góc AOn
nên góc AON=góc ANM
O A M N
Xét tg vuông AMO và tg vuông ANO có
AO chung; OM=ON (bán kính (O))
=> tg AMO = tg ANO (Hai tg vuông có 2 cạnh góc vuông bằng nhau)
\(\Rightarrow AM=AN\) (đpcm)
\(\Rightarrow\widehat{MAO}=\widehat{NAO}\) => AO là phân giác \(\widehat{MAN}\) (đpcm)
\(\Rightarrow\widehat{AOM}=\widehat{AON}\) => AO là phân giác \(\widehat{MON}\) (đpcm)