Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có |MA − MB| ≥ 0 với một điểm M tùy ý và |MA − MB| = 0 chỉ với các điểm M mà MA = MB, tức là chỉ với các điểm M nằm trên đường trung trực của đoạn thẳng AB.
Mặt khác M phải thuộc d. Vậy M là giao điểm của đường thẳng d và đường trung trực của đoạn thẳng AB. Có giao điểm này vì AB không vuông góc với d.
Tóm lại: Khi M là giao điểm của d và đường trung trực của đoạn thẳng AB thì |MA − MB| đạt giá trị nhỏ nhất và bằng 0.
Ta có: \(\left|MA-MB\right|\ge0\) với một điểm M tùy ý.
\(\left|MA-MB\right|=0\) chỉ với điểm M mà MA = MB
=> M nằm trên đường trung trực của đoạn thẳng AB. (Có giao điểm này vì AB không vuông góc với đường thẳng d)
Vậy, \(\left|MA-MB\right|\) đạt GTNN là 0 khi M là giao điểm của đường thẳng d và đường trung trực của đoạn thẳng AB.
Vì AB không song song với d nên AB cắt d tại N.
Với điểm M bất kỳ thuộc d mà M không trùng với N thì ta có tam giác MAB.
Theo hệ quả bất đẳng thức tam giác ta có:
|MA−MB| < AB
Khi M ≡ N thì
|MA−MB|= AB
Vậy |MA−MB| lớn nhất là bằng AB, khi đó M ≡ N là giao điểm của hai đường thẳng d và AB.
Vì AB không song song với d nên AB cắt d tại N
Với \(M\in d\) thì ta có ΔMAB
Xét ΔMAB có |MA-MB|<AB
Nếu M trùng với N thì |MA-MB|=AB
=>Để |MA-MB| lớn nhất thì M trùng với N
Ta có \(\left|MA-MB\right|\ge0\) với một điểm M tùy ý và \(\left|MA-MB\right|=0\) chỉ với các điểm M mà MA = MB, tức là chỉ với các điểm M nằm trên đường trung trực của đoạn thẳng AB.
Mặt khác M phải thuộc d. Vậy M là giao điểm của đường thẳng d và đường trung trực của đoạn thẳng AB. Có giao điểm này vì AB không vuông góc với d.
Tóm lại: Khi M là giao điểm của d và đường trung trực của đoạn thẳng AB thì \(\left|MA-MB\right|\) đạt giá trị nhỏ nhất và bằng 0.
Ta có `:|MA-MB|>=0` với `1` điểm `M` tuỳ ý và `|MA-MB|=0` chỉ với các điểm `M` mà `MA=MB` , tức là chỉ với các điểm `M` nằm trên đg trung trực đoạn thẳng `AB`
Mặt khác , `M in d` . Vậy `M ` là giao điểm của đg thẳng `d` và đg trung trực của đoạn thẳng `AB` . Có giao điểm này vì `AB` không vuông góc với `d`
Tóm lại : Khi `M` là giao điểm của `d` và đg trung trực của `AB` thì `|MA-MB|` đạt giá trị nhỏ nhất và `=0`