Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì F thuộc đường trung trực của BC => FB = FC => tam giác FBC cân tại F => góc FBC = FCB
Vì E thuộc đường trung trực của AC => EA = EC => tam giác EAC cân tại E => góc EAC = ECA
=> FBC = EAC Mà hai góc này ở vị trí đồng vị nên AE // BF
Cách 2:
Gọi d; d' lần lượt là đường trung trực của AC; BC
d cắt AC tại M; d' cắt BC tại N
=> M; N là trung điểm của AC; BC
+) Xét tam giác AME và CME có: EM chung; góc AME = CME; AM = CM
=> tam giác AME = CME ( c - g - c)
=> góc EAM = ECM (1)
+) Tương tự, tam giác FBN = FCN ( c- g - c)
=> góc FBN = FCN (2)
Từ (1)(2) => góc EAM = FBN Mà hai góc này ở vị trí đồng vị
=> AE // BF
Kí hiệu tam giác vt là t/g nhé
a) Xét t/g AOC và t/g BOD có:
OA = OB (gt)
CAO = DBO (gt)
AC = BD (gt)
Do đó, t/g AOC = t/g BOD (c.g.c)
=> OC = OD (2 cạnh tương ứng) (1)
Tương tự ta cũng có t/g AOE = t/g BOF (c.g.c)
=> OE = OF (2 cạnh tương ứng) (2)
(1) và (2) là đpcm
b) t/g AOC = t/g BOD (câu a)
=> AOC = BOD (2 góc tương ứng)
Mà AOC + COB = 180o ( kề bù)
nên BOD + COB = 180o
=> COD = 180o
=> C,O,D thẳng hàng
trường hợp c` lại tương tự
c) Có: AC = BD (gt); AE = BF (gt)
=> AE - AC = BF - BD ( vì hình của mk AE > AC c` nếu hình bn vẽ AC > AE thì ngược lại)
=> EC = FD
Vì BAx = ABy mà 2 góc này ở vị trí so le trong nên Ax // By
Xét t/g CEO và t/g DFO có:
CEO = DFO (so le trong)
EC = FD (cmt)
ECO = FDO (so le trong)
Do đó, t/g CEO = t/g DFO (g.c.g)
=> CO = DO (2 cạnh tương ứng)
EO = FO (2 cạnh tương ứng)
Từ đó dễ dàng suy ra t/g COF = t/g DOE (c.g.c)
=> CF = DE (2 cạnh tương ứng) (đpcm)
Xét ΔCOA và ΔDOB :
CA=DB( gt)
∠CAO=∠DBO (gt)
AO=OB
=> ΔCOA=ΔDOB (c-g-c) => ∠AOC =∠BOD
Lại có ∠DOB + ∠BOC= ∠BOC +∠COA =∠AOB=1800
=> ∠DOC =1800=> C,O,D thẳng hàng
CMTT
=> ΔAEO =ΔBFO( c-g-c)
=>∠AOE=∠BOF
=> ∠EOF =∠AOP + ∠AOE= ∠AOF + ∠BOF =∠AOB=1800
=> E,O,F thẳng hàng
hey,mk có quen bạn ko?
vì trong danh sách bạn cũng có người có tên giống hệt cậu lun
Vì Ax//By;C,E thuộc Ax;D,F thuộc By=>Ac//BD, AE//BF
=>góc CAO=góc OBD
Góc AEO=góc OFD
Góc ACO= góc ODB
xét tam giác ACO và tam giác OBD ta có
OA=OB;Góc CAO=BOD;ACO=ODB
=>hai tam giác này bằng nhau
=>góc COA=BOD(2 góc tương ứng )
Mà A,O,B thửng hàng=>góc COB+COA=180 độ
=>góc BOD+COB=180 độ
=>O,C,D thẳng hàng
tương tự chứng minh với E,O,F
b,Từ những tam giác bằng nhau ta có được OE=OF;CO=OD
xét tam giác OED và OCF có OE=OF; CO=OD; góc COF=EOD( 2 góc đối đỉnh)
=>góc FOD=CDE; DE=CF(2 cạnh tương ứng)
mà hai góc này ở vị trí so le trong của hai đoạn thẳng DE và CF được cắt bởi đoạn DC
=>DE//CF
má ơi trình bày trên máy tính khó qua cơ. gấp 3 lần thời gian trình bày ở vở luôn
ý:(((
(
Trường hợp :
Gọi M là trung điểm của AB. Khi đó MA = MB = a.
Điểm E nằm giữa hai điểm A và M, điểm F nằm giữa hai điểm B và M.
Do đó ME = MA - AE = a - AE; MF = MB - BF = a - BF.
Vì AE = BF nên ME = MF. Vậy M là trung điểm chung của hai đoạn thẳng AB và EF. Qua M vẽ thì xy là đường trung trực chung của AB và EF.
Trường hợp : Chứng minh tương tự