Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét \(\Delta AOD\) và \(\Delta BOC\) có:
\(OA=OB\)
\(\widehat{AOD}=\widehat{BOC}\) \(\text{(đối đỉnh)}\)
\(OC=OD\)
\(\Rightarrow\Delta AOD=\Delta BOC\) \(\left(c-g-c\right)\)
\(\Rightarrow\widehat{D}=\widehat{C}\Rightarrow AD//BC\)
b, Từ câu a, ta có:
\(AD//BC\Rightarrow\widehat{A}=\widehat{B}\) \(\text{(cặp góc so le trong)}\)
Xét \(\Delta AOE\) và \(\Delta BOF\) có:
\(OA=OB\)
\(\widehat{A}=\widehat{B}\)
\(AE=BF\)
\(\Rightarrow\Delta AOE=\Delta BOF\left(c-g-c\right)\)
\(\widehat{AOE}=\widehat{BOF}\)
Thứ nhất phải nói, công cụ vẽ hình quá sơ sài :)
a/ cm C, O , D thẳng hàng.
Xét tam giác AOC và tam giác BOD ta có:
AO = OB(O là trung điểm của AB) (1)
AC = BD (gt) (2)
góc CAO = góc DBO (2 góc so le trong , Ax//By) (3)
Từ (1),(2),(3) => tam giác AOC và tam giác BOD (c-g-c)
=> góc AOC = góc BOD (2 góc tương ứng).
Ta có :
góc AOC + góc COD = 1800 (2 góc kề bù) (1)
góc AOC = góc BOD (cmt) (2)
Từ (1),(2) => góc BOD + góc COD = 1800
=> góc COD = 1800
=> C, O , D thẳng hàng.
C/m E,O,F thẳng hàng.
bạn tự chứng minh theo cách trên.
b/ cm DE = CF và DE// CF
Ta có :
AE = BF (gt) (1)
AC = BD (gt) (2)
Từ (1),(2)=> AE - AC = BF - BD
=> CE = DF
Xét tam giác DEC và tam giác CFD ta có:
CD = CD (cạnh chung) (1)
CE = FD (cmt) (2)
góc ECD = góc FDC (2 góc so le trong, Ax//By) (3)
Từ (1),(2),(3) => tam giác DEC = tam giác CFD (c-g-c)
=> DE = CF (2 cạnh tương ứng)
Ta có :
góc CDE = góc DCF ( tam giác DEC = tam giác CFD)
mà góc CDE và góc DCF nằm ở vị trí so le trong
nên DE //CF