Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
OA là tia pg của góc BOx
OB là tia pg của góc DOx
OC là tia pg của góc xOy
a, ^xOa + ^yOa = 180°
=> ^xOa = 180° - 30° = 150°
b, Trên cùng nửa mp bờ Ox có ^xOa = 150° > ^xOb = 30°
=> Ob nằm giữa Ox và Oa.
=> ^aOb = 150° - 30° = 120°
c, ^bOc + ^aOb = 180°
=> ^bOc = 60°
Trên cùng nửa mp bờ Ob có ^bOx = 30° < ^bOc = 60°
=> Ox nằm giữa Ob và Oc.
Mà ^bOc = 2^bOx
=> Ox là pg ^bOc
(Bạn tự vẽ hình!)
- Tia phân giác đầu tiên là \(Ob\)
Giải thích: Ta có: \(\widehat{cOb}+\widehat{bOa}=\widehat{cOa}\)
\(\Rightarrow\widehat{cOb}=\widehat{cOa}-\widehat{bOa}=80-40=40\)độ
Vậy: \(\widehat{cOb}=\widehat{bOa}=\frac{\widehat{cOa}}{2}\)
Mà \(Ob\)nằm giữa \(Oc;Oa\Rightarrow..\)
- Tia phân giác thứ 2 là \(Oc\)
Giải thích: Ta có: \(\widehat{dOb}+\widehat{bOa}=\widehat{dOa}\)
\(\Rightarrow\widehat{dOb}=\widehat{dOa}-\widehat{bOa}=120-40=80\)độ
\(\widehat{dOc}+\widehat{cOb}=\widehat{dOb}\)
\(\Rightarrow\widehat{dOc}=\widehat{dOb}-\widehat{cOb}=80-40=40\)độ
Vậy: \(\widehat{dOc}=\widehat{cOb}=\frac{\widehat{dOb}}{2}\)
Mà \(Oc\)nằm giữa \(Od;Ob\Rightarrow..\)
a: Trên cùng một nửa mặt phẳng bờ chứa tia Ox, ta có: \(\widehat{xOA}< \widehat{xOB}\)
nên tia OA nằm giữa hai tia Ox và OB
Suy ra: \(\widehat{xOA}+\widehat{AOB}=\widehat{xOB}\)
hay \(\widehat{AOB}=55^0\)
Ta có: \(\widehat{yOB}+\widehat{xOB}=180^0\)
nên \(\widehat{yOB}=70^0\)