Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a chắc sai đề rồi bạn.
b. xét tam giác CDA và tam giác EDB:
góc CDA = góc EDB (hai góc đối đỉnh)
góc CAE = góc EBC (góc nội tiếp cùng chắn cung CE)
do đó: tam giacs CDA đồng dạng tam giác EDB (g-g)
=> CD/ED = DA/DB => CD.DB=ED.DA
A. CM BECD nội tiếp
Tứ giác BECD có \(\widehat{BEC}=90^o=\widehat{BDC}\left(gt\right)\)và cùng nhìn cạnh BC
=> BEDC nội tiếp (đpcm)
B. CM Ax là tiếp tuyến của (O)
Trên nửa mp bờ AB không chứa điểm C, kẻ tiếp tuyến Ay của (O). Ta cần cm Ay trùng với Ax.
Ta có Ax là tiếp tuyến của (O) (cách vẽ)
=> \(\widehat{yAB}=\widehat{ACB}\) ( góc tạo bởi tiếp tuyến & dây cung và góc nội tiếp cùng chắn \(\widebat{AB}\)của đường tròn (O)
mà \(\widehat{ACB}=\widehat{AED}\)( góc ngoài bằng góc trong đối điện của BEDC nội tiếp )
=> \(\widehat{yAB}=\widehat{AED}\)và 2 góc này ở vị trí so le trong
=> Ay//ED
Mà Ax//ED (gt)
=> Ay trùng Ax
=> Ax là tiếp tuyến của (O)
a: góc BEC=góc BFC=90 độ
=>BFEC nội tiếp
=>góc BFE+góc BCE=180 độ
=>góc AFE=góc ACB
b: Xét ΔABD và ΔANC có
góc ABD=góc ANC
góc BAD=góc NAC
=>ΔABD đồng dạng với ΔANC
=>AB/AN=BD/NC
=>AB*NC=AN*BD
Xét tứ giác BPNC có N và P cùng nhìn đoạn BC 1 góc 90o
=> LÀ TỨ GIÁC NỘI TIẾP
plz xin mn suy nghĩ một chút trc khi đăng câu hỏi đi ạ
I'm kinda sleepy tho zZzZ