K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2018

Đặt \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{1}{k}\Rightarrow x=ak;y=bk;y=ck\)

\(\Rightarrow\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\frac{a^2k^2+b^2k^2+c^2k^2}{\left(a^2k+b^2k+c^2k\right)^2}=\frac{k^2\left(a^2+b^2+c^2\right)}{k^2\left(a^2+b^2+c^2\right)^2}=\frac{1}{a^2+b^2+c^2}\)

23 tháng 10 2018

Mạo phép sửa đề!CMR: \(\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\frac{3}{a^2+b^2+c^2}\)

Ta có: \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) 

\(\Rightarrow\frac{x^2}{ax}=\frac{y^2}{by}=\frac{z^2}{cz}=\frac{x^2+y^2+z^2}{ax+by+cz}\)  (t/c dãy tỉ số bằng nhau)

\(\Rightarrow\frac{x^2}{\left(ax\right)^2}=\frac{y^2}{\left(by\right)^2}=\frac{z^2}{\left(cz\right)^2}=\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}\) (1)

Lại có: \(\frac{x^2}{\left(ax\right)^2}=\frac{y^2}{\left(by\right)^2}=\frac{z^2}{\left(cz\right)^2}=\) \(\frac{x^2}{a^2x^2}=\frac{y^2}{b^2y^2}=\frac{z^2}{c^2z^2}=\frac{1}{a^2}=\frac{1}{b^2}=\frac{1}{c^2}=\frac{3}{a^2+b^2+c^2}\)

23 tháng 10 2018

Giả sử điều cần c/m là đúng . Khi đó , ta có :

\(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{1}{a^2+b^2+c^2}\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

\(\Leftrightarrow x^2a^2+y^2a^2+z^2a^2+x^2b^2+y^2b^2+z^2b^2+x^2c^2+y^2c^2+z^2c^2\)

\(=x^2a^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)

\(\Leftrightarrow y^2a^2+z^2a^2+x^2b^2+z^2b^2+x^2c^2+y^2c^2=2axby+2bycz+2axcz\)

\(\Leftrightarrow y^2a^2+z^2a^2+x^2b^2+z^2b^2+x^2c^2+y^2c^2-2axby-2bycz-2axcz=0\) \(\Leftrightarrow\left(y^2a^2-2axby+b^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)+\left(x^2c^2-2axcz+a^2z^2\right)=0\)

\(\Leftrightarrow\left(ay-bx\right)^2+\left(bz-cy\right)^2+\left(cx-az\right)^2=0\left(1\right)\)

Do \(\left\{{}\begin{matrix}\left(ay-bx\right)^2\ge0\\\left(bz-cy\right)^2\ge0\\\left(cx-az\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(ay-bx\right)^2+\left(bz-cy\right)^2+\left(cx-az\right)^2\ge0\left(2\right)\)

Từ ( 1 ) ; ( 2 ) \(\Rightarrow\left\{{}\begin{matrix}ay-bx=0\\bz-cy=0\\cx-az=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ay=bx\\bz=cy\\cx=az\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{x}=\dfrac{b}{y}\\\dfrac{b}{y}=\dfrac{c}{z}\\\dfrac{c}{z}=\dfrac{a}{x}\end{matrix}\right.\) \(\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)

Điều này đúng với GT đề bài cho

\(\Rightarrow\) Điều cần c/m là đúng

\(\Rightarrow\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{1}{a^2+b^2+c^2}\left(đpcm\right)\)

24 tháng 10 2018

hơi dài bạn ạ bđt trên đúng theo bunhia vì dấu "=" đúng với điều kiện rồi

11 tháng 12 2022

Đặt x/a=y/b=z/c=k

=>x=ak; y=bk; z=ck

\(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{a^2k^2+b^2k^2+c^2k^2}{\left(a\cdot ak+b\cdot bk+c\cdot ck\right)^2}\)

\(=\dfrac{k^2\left(a^2+b^2+c^2\right)}{k^2\left(a^2+b^2+c^2\right)^2}=\dfrac{1}{a^2+b^2+c^2}\)

28 tháng 7 2017

\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)

\(\Leftrightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)

\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)

Trừ cả 2 vế cho \(a^2x^2+b^2y^2+c^2z^2\), ta có:

\(a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2=2axby+2bycz+2axcz\)

\(\Rightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2-2axby-2bycz-2axcz=0\)

\(\left(a^2y^2+b^2x^2-2axby\right)+\left(a^2z^2+c^2z^2-2axcz\right)+\left(b^2z^2+c^2y^2-2bycz\right)=0\)

\(\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)

\(\left\{{}\begin{matrix}\left(ay-bx\right)^2\ge0\\\left(az-cx\right)^2\ge0\\\left(bz-cy\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ay-bx=0\\az-cx=0\\bz-cy=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ay=bx\\az=cx\\bz=cy\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)

=> đpcm

AH
Akai Haruma
Giáo viên
12 tháng 11 2018

Lời giải:

\(\frac{(ax+by+cz)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\)

\(\Rightarrow (ax+by+cz)^2=(a^2+b^2+c^2)(x^2+y^2+z^2)\)

\(\Leftrightarrow a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)

\(\Leftrightarrow 2axby+2bycz+2axcz=a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2\)

\(\Leftrightarrow (a^2y^2+b^2x^2-2axby)+(a^2z^2+c^2x^2-2axcz)+(b^2z^2+c^2y^2-2bycz)=0\)

\(\Leftrightarrow (ay-bx)^2+(az-cx)^2+(bz-cy)^2=0\)

Vì bản thân mỗi số hạng đều không âm nên để tổng của chúng bằng $0$ thì:

\((ay-bx)^2=(az-cx)^2=(bz-cy)^2=0\Rightarrow ay=bx; az=cx; bz=cy\)

\(\Rightarrow \frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Ta có đpcm.

a: \(\dfrac{xy}{x^2+y^2}=\dfrac{5}{8}\)

=>\(\dfrac{xy}{5}=\dfrac{x^2+y^2}{8}=k\)

=>\(xy=5k;x^2+y^2=8k\)

\(A=\dfrac{8k-2\cdot5k}{8k+2\cdot5k}=\dfrac{-2}{18}=\dfrac{-1}{9}\)

b: Đặt \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=k\)

=>x=a*k; y=b*k; z=c*k

\(B=\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{a^2k^2+b^2k^2+c^2k^2}{\left(a\cdot ak+b\cdot bk+c\cdot ck\right)^2}\)

\(=\dfrac{k^2\cdot\left(a^2+b^2+c^2\right)}{k^2\left(a^2+b^2+c^2\right)^2}=\dfrac{1}{a^2+b^2+c^2}\)

30 tháng 9 2018

Ta có : \(\dfrac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\)

\(\Leftrightarrow\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow a^2x^2+b^2y^2+c^2z^2+2axby+2axcz+2bycz=a^2x^2+b^2x^2+c^2x^2+a^2y^2+b^2y^2+c^2y^2+a^2z^2+b^2z^2+c^2z^2\)

\(\Leftrightarrow2axby+2axvz+2bycz=a^2y^2+b^2x^2+a^2z^2+c^2x^2+b^2z^2+c^2y^2\)

\(\Leftrightarrow a^2y^2+b^2x^2+a^2z^2+c^2x^2+b^2z^2+c^2y^2-2axby-2azcx-2bycz=0\)

\(\Leftrightarrow\left(a^2y^2-2axby+b^2x^2\right)+\left(a^2z^2-2azcx+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)=0\)

\(\Leftrightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)

Do \(\left(ay-bx\right)^2\ge0;\left(az-cx\right)^2\ge0;\left(bz-cy\right)^2\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}ay-bx=0\\az-cx=0\\bz-cy=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ay=bx\\az=cx\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{x}=\dfrac{b}{y}\\\dfrac{c}{z}=\dfrac{a}{x}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\left(đpcm\right)\)

:Dbanh

17 tháng 8 2017

1) Đặt \(B=x^2+y^2+z^2\)

\(C=\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)

Ta có: \(x+y+z=0\Rightarrow\left(x+y+z\right)^2=0\)

\(\Leftrightarrow-2\left(xy+yz+xz\right)=x^2+y^2+z^2\)

Suy ra: \(C=2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)=2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2=3\left(x^2+y^2+z^2\right)\)

\(\Rightarrow A=\dfrac{B}{C}=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)

17 tháng 8 2017

2) \(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\)

\(\Leftrightarrow x^2+xy-2xy-2y^2=0\)

\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\)

\(\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)

Do \(x+y\ne0\) nên \(x-2y=0\Leftrightarrow x=2y\)

Do đó: \(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)